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Periods of algebraic varieties

2

They describe the comparison between topological data (cycles) 

and algebraic data (algebraic De Rham forms).

∫T(γ)

A
Pk

Some integration domain

without boundary

 defines a smooth variety
P
V(P) = {z ∣ P(z) = 0}

 is a polynomial A
γ

          Hn(S, ℤ) × Hn
DR(S) → ℂ γ, ω ↦ ∫γ

ω

A period of an algebraic variety is the integral of a rational form of the variety on a cycle.

Torelli-type theorem for K3 surfaces:

Two K3 surfaces are isomorphic if and only if they have “the same” periods.

An elliptic curve
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Motivation and goals

3

Goal: compute numerical approximations of these integrals with large precision.

Periods appear in diverse fields of mathematics and 
physics, such as Quantum field theory (Feynman 
integrals), Hodge theory, motives, number theory 

(BSD conjecture) …

γ
For this, we need an appropriate description of the integrals.


In particular we will focus on understanding the cycles of 
integration (the homology), how to represent them in a way that 

make integration easy, and how to compute a basis of them.

Furthermore we want this to be effective and efficient.
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3

Goal: compute numerical approximations of these integrals with large precision.

Periods appear in diverse fields of mathematics and 
physics, such as Quantum field theory (Feynman 
integrals), Hodge theory, motives, number theory 

(BSD conjecture) …
Hundreds of digits 

Sufficiently many to recover  
algebraic invariants

γ
For this, we need an appropriate description of the integrals.


In particular we will focus on understanding the cycles of 
integration (the homology), how to represent them in a way that 

make integration easy, and how to compute a basis of them.

Furthermore we want this to be effective and efficient.
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Previous works

4

[Sertöz 2019]: compute the period matrix of smooth projective 
hypersurfaces by deformation.

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018],  
[Molin, Neurohr 2017]: 


Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]: 

Higher dimensional varieties 


(double covers of  ramified along 6 lines / of  ramified along 8 planes)ℙ2 ℙ3
Picture by 

Alessandra Sarti

Variety for which  
the periods are known

Target variety
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Previous works

5

[Sertöz 2019]: compute the periods matrix by deformation:

We wish to compute . ∫γ

Ω
X3 + Y3 + Z3 + XYZ

We may numerically compute the analytic continuation of  

along a path from 0 to 1.   [Chudnovsky2, Van der Hoeven, Mezzarobba] 


This way, we obtain a numerical approximation of .

π0

π1

Let us consider instead , πt = ∫γt

Ω
X3 + Y3 + Z3 + tXYZ

Exact formulae are known for  [Pham 65, Sertöz 19]π0

Furthermore  is a solution to the differential operator

  (Picard-Fuchs equation).

πt

ℒ = (t3 + 27)∂2
t + 3t2∂t + t

0 1 ℂ
π0 π1



42

Previous works

6

Two drawbacks :

We rely on the knowledge of the periods of some variety.

[Pham 65, Sertöz 19] provide the periods of the Fermat hypersurfaces 

.V(Xd
0 + … + Xd

n )
In more general cases (e.g. complete intersections), we do not have this data.

The differential operators that need to be integrated 

quickly go beyond what current software can manage:

to compute the periods of a smooth quartic surface in , 

one needs to integrate an operator of order 21 and high degree. 

ℙ3

Idea: a more intrinsic description of the cycles of integration 
should solve both problems. 

[Sertöz 2019]: compute the periods matrix by deformation:
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Contributions

7

New effective method for computing homology and periods 
with high precision (hundreds of digits):

 implementation in Sagemath 
lefschetz_family

→

 sufficiently efficient to compute periods of 
previously inaccessible hypersurfaces 


(general smooth quartic surface)

→

 frontal approach to the the 
computation of homology of complex 

algebraic varieties

→

 applicable to other types of varieties 
(elliptic surfaces, ramified double covers, …)

→



Periods of algebraic 
curves

Algorithm from [Deconinck, van Hoeij 2001]
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First example: algebraic curves

9

t1 t2
ℂ

ℓ

f −1(t1) f −1(t2)

Let  be the elliptic curve defined 
by  

and let  be 
a generic projection.

𝒳
P = y3 + x3 + 1 = 0

f : (x, y) ↦ y/(2x + 1)
The fibre above  is 


. 

It deforms continuously with respect to .

t ∈ ℂ 𝒳t = f −1(t)
= {(x, t(2x + 1)) ∣ P (x, t(2x + 1)) = 0}

t

In dimension 1, we are looking for 

closed paths in , up to deformation 
(1-cycles).

𝒳

ℂ

ℓ


f (loop)
= loop

 ?f −1(loop) = loop

Not always,  
see next slide

Values of  for which 
 

has a double root (critical values)

t
P(x, t(2x + 1)) = t3(2x + 1)3 + x3 + 1
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What happens when you loop around a critical point?

10

f −1(t1)

t1

ℂ

ℓ

A loop  in  pointed at  induces a permutation of 
.

ℓ ℂ t1
𝒳t1 = f −1(t1)

This permutation is called the action of monodromy along  on . 

It is denoted .


If  is a simple loop around a critical value,  is a transposition.

ℓ 𝒳t1
ℓ*

ℓ ℓ*
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ℂ
b

Δ3

ℓ3 c2c3

Periods of algebraic curves

11

The lift of a simple loop  around a critical value  that has a non-trivial 
boundary in  is called the thimble of . It is an element of .

ℓ c
𝒳b c H1(𝒳, 𝒳b)

Concretely, we take the kernel of the boundary map 
δ : H1(𝒳, 𝒳b) → H0(𝒳b)

Fact: all of  can be recovered this way.H1(𝒳)

Thimbles serve as building blocks to recover . 

It is sufficient to glue thimbles together in a way such that their boundaries cancels.


H1(𝒳)

Relative homology 

of the pair (𝒳, 𝒳b)

0 → H1(𝒳) → H1(𝒳, 𝒳b) → H0(𝒳b)

Simple loop 

around c1

Generated 

by thimbles

Δ1

Δ2

c1
ℓ1

ℓ2
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Computing periods of algebraic curves

12

b

ℂ

1. Compute simple loops  around the critical values 
— basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})
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Computing periods of algebraic curves

13

𝒳b

b

ℂ

ℓ

1. Compute simple loops  around the critical values 
— basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})

2. For each  compute the action of monodromy along  on  
(transposition)

i ℓi 𝒳b



42

Computing periods of algebraic curves

14

b

ℂ

ℓ

1. Compute simple loops  around the critical values 
— basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})

3. This provides the corresponding thimble . Its boundary is the 
difference of the two points of  that are permuted.

Δi
𝒳b

2. For each  compute the action of monodromy along  on  
(transposition)

i ℓi 𝒳b



42

Computing periods of algebraic curves

15
ℂ

b

Δ1

Δ2

Δ3

ℓ1

ℓ2ℓ3

c1

c2
c3

1. Compute simple loops  around the critical values 
— basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})

3. This provides the corresponding thimble . Its boundary is the 
difference of the two points of  that are permuted.

Δi
𝒳b

2. For each  compute the action of monodromy along  on  
(transposition)

i ℓi 𝒳b

4. Compute sums of thimbles without boundary  basis 
of 

→
H1(𝒳)
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Computing periods of algebraic curves

16

5. Periods are integrals along these loops 

 we have an explicit parametrisation of these paths  numerical integration.→ →

∫γ
ω = ∫ℓ

ωt

1. Compute simple loops  around the critical values 
— basis of 

ℓ1, …, ℓ#crit.
π1(ℂ∖{crit. val.})

3. This provides the corresponding thimble . Its boundary is the 
difference of the two points of  that are permuted.

Δi
𝒳b

4. Compute sums of thimbles without boundary  basis 
of 

→
H1(𝒳)

DEMO

2. For each  compute the action of monodromy along  on  
(transposition)

i ℓi 𝒳b



Hypersurfaces
An inductive approach

Ideas of [Lefschetz 1924], made effective in [Lairez, PP, Vanhove 2024] 



42

Monodromy

A Dehn twist

Let  be a smooth (hyper)surface in . We consider a projection .

The fibre  is a curve, which deforms continuously as  moves in .

𝒳 ℙ3 𝒳 → ℙ1

𝒳t = f −1(t) t ℙ1

ℙ1

ℓ

The map  induced by this deformation 
along a loop  is called the monodromy along .

ℓ* : H1(𝒳b) → H1(𝒳b)
ℓ ℓ

Eb

b b

When the monodromy is a Dehn twist, the

singular fibre is said to be of Lefschetz type.


 has rank 1 and its image is primitive.ℓ* − id
The monodromy is encoded in a differential 

operator: the Picard-Fuchs equation.
18

  γ ≠ ℓ*γ

Ehresmann’s 

fibration theorem



42

Insight into higher dimensions: surfaces

∫τℓ(γ)
f(x, y)dxdy = ∫ℓ (∫γ

f(x, y)dx) dy

γ

b

ℓ

γΣ = ℓ*γ τγΣ 

ℙ1

We can recover integration 2-cycles 
for the periods of elliptic surfaces as 
extensions of 1-cycles of the fibre. γ

This description of cycles is well-suited 
for integrating the periods:

 does not have boundary

iff , that is 


iff 

τ
γ = γΣ 

γ ∈ ker ℓ* − id


π1(ℙ1∖′, b) × H1(𝒳b) → H2(𝒳, 𝒳b)
ℓ, γ ↦ τℓ(γ)

∂τℓ(γ) = γΣ − γ

19

′

We are looking for 2-cycles.

The fibre  is a curve which deforms 

continuously with respect to .
𝒳t

t



42

Insight into higher dimensions: surfaces

∫τℓ(γ)
f(x, y)dxdy = ∫ℓ (∫γ

f(x, y)dx) dy

Two line integrals: 

we know how to compute these efficiently!


[Chudnovsky2, Van der Hoeven, Mezzarobba]

γ

b

ℓ

γΣ = ℓ*γ τγΣ 

ℙ1

We can recover integration 2-cycles 
for the periods of elliptic surfaces as 
extensions of 1-cycles of the fibre. γ

This description of cycles is well-suited 
for integrating the periods:

 does not have boundary

iff , that is 


iff 

τ
γ = γΣ 
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π1(ℙ1∖′, b) × H1(𝒳b) → H2(𝒳, 𝒳b)
ℓ, γ ↦ τℓ(γ)

∂τℓ(γ) = γΣ − γ

19

′

We are looking for 2-cycles.

The fibre  is a curve which deforms 

continuously with respect to .
𝒳t

t
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Comparison with dimension 1

20

The monodromy along a loop  is an 
isomorphism of .

ℓ
Hn−1(𝒳b)

Extensions are -cycles obtained by 
extending -cycles along loops.

n
n − 1

If the projection is generic (Lefschetz), 
singular fibres are simple.

There is a single thimble per critical value.

We get almost every possible -cycle 
by gluing thimbles.

n

Hn(𝒳b) → Hn(𝒳) → Hn(𝒳, 𝒳b) → Hn−1(𝒳b)
Almost  

generated 

by thimbles

Possibly

nontrivial

γ

b

ℓ

τ

ℙ1

′
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Some complications

21

Not all cycles of  are lift of loops, and thus not all are 
combinations of thimbles.
Hn(𝒴)

More precisely, we are missing the 
homology class of the fibre  


and a section (an extension of  
to all of ).

Hn(𝒳b)
Hn−2(𝒳b)

ℙ1

b ℂ

Hn(𝒳b)

𝒯

Hn−2(𝒳b)

We have a filtration  
such that







ℱ0 ⊂ ℱ1 ⊂ ℱ2 = Hn(𝒴)

ℱ0 ≃ Hn(𝒳b)
ℱ1/ℱ0 ≃ 𝒯

ℱ2/ℱ1 ≃ Hn−2(Xb)

 is also known as the parabolic cohomology of the local system.𝒯

Interesting  
part
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Not all cycles of  are lift of loops, and thus not all are 
combinations of thimbles.
Hn(𝒴)

More precisely, we are missing the 
homology class of the fibre  


and a section (an extension of  
to all of ).

Hn(𝒳b)
Hn−2(𝒳b)

ℙ1

b ℂ

Hn(𝒳b)

𝒯

Hn−2(𝒳b)

We have a filtration  
such that







ℱ0 ⊂ ℱ1 ⊂ ℱ2 = Hn(𝒴)

ℱ0 ≃ Hn(𝒳b)
ℱ1/ℱ0 ≃ 𝒯

ℱ2/ℱ1 ≃ Hn−2(Xb)

 is also known as the parabolic cohomology of the local system.𝒯

Interesting  
partHow do we 


compute this?
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Monodromy of a differential operator

22

f(t) −
m

∑
k=0

f (k)(α)
k! (t − α)k ≤ 𝒫(m)2−m

In a disk around , the precision 
given by the Taylor formula is 

exponential in its order.

α
polynomial 


in  (effective)m

Linear complexity: Recover  digits in  operationsm 𝒪(m)

α t
From the derivatives at , 


we can recover the derivatives at .
α

t

[Chudnovsky2 90, Van der Hoeven 99, Mezzarobba 2010] 

In a small radius around :α

We compute  from .f k(α) ℒ

(using binary splitting)

[Mezzarobba Salvy 2009]
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Computing monodromy on cycles

Πij = ∫γj

∂i
tωt Π̃ij

Πij

Π̃ij

Analytic 

continuation

Solution to 
Picard-Fuchs

equation of ωt

[Chudnovsky2 90, Van der Hoeven 99,  
Mezzarobba 2010] 

23
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Computing monodromy on cycles

Πij = ∫γj

∂i
tωt Π̃ij

Πij

Π̃ij

Analytic 

continuation

Solution to 
Picard-Fuchs

equation of ωt

Globally defined

 no monodromy⟹




The ’s are integers

γ̃j = ∑
k

ckjγk

ckj

[Chudnovsky2 90, Van der Hoeven 99,  
Mezzarobba 2010] 

23

= ∫∑k ckjγk

∂i
tωt = ∑

k
ckj ∫γk

∂i
tωt
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Computing monodromy on cycles

Πij = ∫γj

∂i
tωt Π̃ij

Thus       i.e. Π̃ = ΠC

Π−1Π̃ = C ∈ GL2(ℤ)

Computation of

transcendental


nature

Πij

Π̃ij

It is sufficient to carry out this 
computation with precision  

to recover  exactly.
< 1/2

C

Analytic 

continuation

Solution to 
Picard-Fuchs

equation of ωt

Globally defined

 no monodromy⟹




The ’s are integers

γ̃j = ∑
k

ckjγk

ckj

[Chudnovsky2 90, Van der Hoeven 99,  
Mezzarobba 2010] 

23

= ∫∑k ckjγk

∂i
tωt = ∑

k
ckj ∫γk

∂i
tωt
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Periods of hypersurfaces

24

For example, we can find quartic surfaces with Picard rank 2, 3 and 5, 
which were missing entries in a search of [Lairez Sertöz 2019].


𝒳 = V
x4 − x2y2 − xy3 − y4 + x2yz + xy2z + x2z2 − xyz2 + xz3

−x3w − x2yw + xy2w − y3w + y2zw − xz2w + yz2w − z3w + xyw2

+y2w2 − xzw2 − xw3 + yw3 + zw3 + w4

From the monodromy we compute the boundary of thimbles, and we can 
glue them to obtain extensions.

ℓ*γ τ

∂τℓ(γ) = ℓ*γ − γ

∫τℓ(γ)
ω = ∫ℓ (∫γ

ωt) ∧ dt

This yields an inductive method for 
computing the periods of smooth 

hypersurfaces.

From the periods, we may recover algebraic invariants.

γ
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Periods of hypersurfaces

25

We thus obtain an algorithm for computing the periods of smooth 
hypersurfaces, inductive on the dimension.

Because we are working with lower dimensional varieties, this method turns out 
to be more efficient than that of [Sertöz 2019], in particular for the computation 

of periods of quartic K3 surfaces:

In all cases, lefschetz-family integrates an operator of order 7.

The bottleneck for accessing higher dimensions is still the 
order/degree of the differential operators.

−x4 − w4 − z4 − w4

We have solved one of the main difficulties: 

the direct computation of the homology of hypersurfaces.

However we are still relying on a generosity assumption.



Beyond hypersurfaces
Non-Lefschetz fibrations

[PP 2024]
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An elliptic surface  is a smooth algebraic surface 

equipped with a map to the projective line

S

Elliptic surfaces

such that all but finitely many fibres  are elliptic curves.f −1(t)
f : S → ℙ1

ℙ1

f −1(t1) f −1(t2)

t1
t2t3

27

f −1(t3)

We will assume the surface has a section.

The fibration is given.

We cannot choose it 

to be generic.
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Non-Lefschetz fibrations: an example

28

The Apéry surface , defined by .S y2 + (t − 1)xy + ty = x3 − tx2
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Non-Lefschetz fibrations: an example

28

1/16

The Apéry surface , defined by .S y2 + (t − 1)xy + ty = x3 − tx2

0

∞

Compute the set  of critical values


i.e., the roots of the discriminant 

′
t4(t − 1

16 )
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Non-Lefschetz fibrations: an example

28

1/16

The Apéry surface , defined by .S y2 + (t − 1)xy + ty = x3 − tx2

0

∞

Pick a base point
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Non-Lefschetz fibrations: an example

28

1/16

The Apéry surface , defined by .S y2 + (t − 1)xy + ty = x3 − tx2

0

∞

Compute a basis of 
simple loops of π1(ℂ∖′)
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Non-Lefschetz fibrations: an example

28

1/16( 3 4
−1 −1)

The Apéry surface , defined by .S y2 + (t − 1)xy + ty = x3 − tx2

(1 4
0 1)

(−1 0
1 −1)

0

∞

For each loop, compute 
the monodromy matrix
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Non-Lefschetz fibrations: an example

28

1/16( 3 4
−1 −1)

The Apéry surface , defined by .S y2 + (t − 1)xy + ty = x3 − tx2

(1 4
0 1)

(−1 0
1 −1)

0

∞

rank (ℓ* − id) ≠ 1

 not 

primitive
(4,0)

Not all fibres  
are Lefschetz! 

We have to find a workaround …
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28

1/16( 3 4
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(1 4
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(−1 0
1 −1)

0

∞

rank (ℓ* − id) ≠ 1

 not 

primitive
(4,0)

Not all fibres  
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We have to find a workaround …
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Non-Lefschetz fibrations: an example

29

We deform the surface to  : .S̃ y2 + (t − 1)xy + ty = x3 − tx2 + ε

As the deformation is smooth,

the topology is the same: 


.H2(S) ≃ H2(S̃)
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Non-Lefschetz fibrations: an example

30

(1 4
0 1)

(−1 0
1 −1)

( 3 4
−1 −1)

We apply the previous steps.

We deform the surface to  : .S̃ y2 + (t − 1)xy + ty = x3 − tx2 + ε
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Non-Lefschetz fibrations: an example

30

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1) (1 1

0 1)(1 4
0 1)

(−1 0
1 −1)

( 3 4
−1 −1)( 3 4

−1 −1)

We apply the previous steps.

We deform the surface to  : .S̃ y2 + (t − 1)xy + ty = x3 − tx2 + ε
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Non-Lefschetz fibrations: an example

30

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1) (1 1

0 1)

This is called a morsification.
Now all fibres are of Lefschetz type.

(1 4
0 1)

(−1 0
1 −1)

( 3 4
−1 −1)( 3 4

−1 −1)

We apply the previous steps.

We deform the surface to  : .S̃ y2 + (t − 1)xy + ty = x3 − tx2 + ε
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Non-Lefschetz fibrations: an example

31

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

(1 1
0 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1)

( 1 0
−1 1)

(1 1
0 1)

( 1 0
−1 1) (1 1

0 1)(1 4
0 1)

(−1 0
1 −1)

( 3 4
−1 −1) ( 3 4

−1 −1)

Some new vanishing extensions appear: 

they correspond to components of 

singular fibres.

Their periods are zero.

We deform the surface to  : .S̃ y2 + (t − 1)xy + ty = x3 − tx2 + ε
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Non-Lefschetz fibrations: an example
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0 1)
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−1 1)
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( 1 0
−1 1) (1 1

0 1)(1 4
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(−1 0
1 −1)

( 3 4
−1 −1) ( 3 4

−1 −1)

Some new vanishing extensions appear: 

they correspond to components of 

singular fibres.

Their periods are zero.

Some other new extensions also appear.

We deform the surface to  : .S̃ y2 + (t − 1)xy + ty = x3 − tx2 + ε
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Non-Lefschetz fibrations

32

Theorem [Moishezon 1977]: Morsifications always exist.

Theorem [Cadavid Vélez 2009]: 

The monodromy of the morsification is determined by the monodromy of .S

Theorem [PP 2024]: The sublattice of  generated by extensions of , the 
section, the fibre and singular components has full rank.

H2(S) S

Kodaira classification [1963]

…

Monodromy preserves the 
intersection product

(a b
c d) ( 0 1

−1 0) (a b
c d)

T

= ( 0 1
−1 0)

⟺ ad − bc = 1

The monodromy matrix is in .SL2(ℤ)

only cycles with 

nonzero periods
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Non-Lefschetz fibrations

33

(1 4
0 1) (−1 0

1 −1)( 3 4
−1 −1)

( 3 4
−1 −1)

Theorem [Cadavid, Vélez 2009]: 

The monodromy of the morsification is determined by the monodromy of .S

I1 : U I4 : U4 I*1 : UVUVUV

ℓ1 ℓ2 ℓ3

ℓΣ 1

(1 1
0 1) (1 1

0 1) (1 1
0 1) (1 1

0 1)
ℓΣ 21 ℓΣ 22 ℓΣ 23 ℓΣ 24

( 1 0
−1 1)(1 1

0 1)( 1 0
−1 1)( 1 0

−1 1) (1 1
0 1)( 1 0

−1 1) (1 1
0 1)

ℓΣ 31 ℓΣ 32 ℓΣ 33 ℓΣ 34 ℓΣ 35 ℓΣ 36 ℓΣ 37

In particular we do not need to find an explicit realisation of the morsification!

morsification
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The algorithm for elliptic surfaces

Implemented in the lefschetz-family Sagemath package, available on my webpage.

1. Compute a basis of simple loops  of 

2. For each , compute the monodromy map .

3. Glue thimbles together to obtain extension cycles of .

4. Integrate the periods on these cycles.


5. From the monodromy type of , recover the monodromy matrices of a 
morsification .


6. Glue thimbles together to obtain extension cycles of .

7. Recover the homology  of the morsification (extensions + fibre + section).

8. Describe the extensions of  in terms of the extensions of .


9. Recover the periods of all of .

ℓ1, …, ℓr π1(ℙ1∖′, b)
1 ≤ i ≤ r ℓi*

H2(S)

ℓi*
S̃

H2(S̃)
H2(S̃)

H2(S) H2(S̃)

H2(S) ≃ H2(S̃)

This allows for the (heuristic) computation of certain algebraic invariants of the elliptic 
surface (Néron-Severi group, Mordell-Weil group, …)

34



Further applications

[Doran, Harder, PP, Vanhove 2024] and ongoing works

of the methods presented here
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Recovering certain algebraic invariants

36

Theorem [Doran Harder PP Vanhove 2024]: The Tardigrade hypersurface has the same 
motivic geometry as a quartic K3 surface with six  singularities.A1

Our methods allow to compute the periods of this quartic K3 surface.

Lefschetz’s theorem on (1,1) classes: 

A homology class  is in the Néron-Severi group  iff the periods of 

holomorphic forms on  vanish.
γ ∈ H2(S) NS(S)

γ

Using the LLL algorithm, we can heuristically recover this kernel

by finding integer linear relations between the periods.

From the periods, we recover numerically that  
its Néron-Severi rank is 11 for generic values of the mass parameters.
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Lines on a cubic surfaces

37

There are 27 (complex) lines  on a cubic surface .L1, L2, …, L27 𝒳

Animation by Greg Egan

Such lines are isolated in their linear equivalence class in .

These classes are characterised 


by the following intersection numbers:

H2(𝒳)

⟨Li, h𝒳⟩ = 1 L2
i = − 1

where  is the class of the hyperplane section.h𝒳

Let  be a one parameter family of cubic surfaces.𝒳t

We may compute the action of monodromy on homology .ℓ* : H2(𝒳b) → H2(𝒳b)
As  preserves the intersection product and , we have that




for some permutation  of .

ℓ* h𝒳
ℓ*Li = Lσℓ(i)

σℓ {1,2,…,27}

We can compute !σℓ
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Genus 2 fibrations

38

Certain K3 surfaces are given by ramified double covers of . 

We may fibre them with genus 2 curves.


When the ramification locus is smooth, we may always obtain a Lefschetz fibration.

ℙ2

When it is not, can we always morsify? 

Can we bypass explicit morsifications?

There are many more singular types to 
consider than for elliptic fibrations (118 vs 8).

Furthermore the monodromy matrices alone do 
not determine the type of the singular fibres. 
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Concluding remarks

39

New methods for computing periods of algebraic varieties, implemented for 
hypersurfaces, elliptic surfaces and Lefschetz genus 2 fibered surfaces.

From these numerical approximations, we 
recover algebraic invariants of certain 
varieties arising in other contexts (mirror 

symmetry, Feynman integrals).

They are sufficiently efficient to recover the periods of examples previously out of reach.

ℙ1

f −1(t1) f −1(t2)

t1
t2t3

f −1(t3)

γ

𝒳 = V
x4 − x2y2 − xy3 − y4 + x2yz + xy2z + x2z2 − xyz2 + xz3

−x3w − x2yw + xy2w − y3w + y2zw − xz2w + yz2w − z3w + xyw2

+y2w2 − xzw2 − xw3 + yw3 + zw3 + w4



Thank you!

L’analysis situs et la géométrie algébrique, 1924, Solomon Lefschetz


