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Overview



Overview

In certain situations there is a map

domain σ ⇝ logarithmic differential form ϖσ .

boundary structure of σ ←→ residue structure of ϖσ .

Terminology in the physics literature

σ = a “positive geometry” ⇝ ϖσ = its “canonical form”.

(Motivation: Arkani-Hamed–Trnka’s amplituhedra.)

Example: an interval

σ = [a,b] ⊂ R ⇝ ϖσ = dlog
(
x− b
x− a

)
=

(b− a)dx
(x− a)(x− b) .

Our message
This is a byproduct of Deligne’s mixed Hodge theory.
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Recursive structure

“The residue of the canonical form is the canonical form of the boundary”.

Example: a triangle

σ = {0 ⩽ x ⩽ y ⩽ 1} ⊂ R2 ⇝ ϖσ =
dx ∧ dy

x(y− x)(y− 1) .

On the horizontal boundary component {y = 1}, we have

Res{y=1}(ϖσ) =
dx

x(1− x) = ϖσ∩{y=1}.

{y = 1}
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Recursive definition

Definition (Arkani-Hamed–Bai–Lam)
A positive geometry of dimension n is a pair (X, σ) where

– X is a projective real algebraic variety of dimension n;
– σ is an n-dimensional oriented semi-algebraic domain in X;

such that there exists a unique algebraic n-form ϖσ on X with logarithmic
singularities, satisfying:

▶ every boundary component (D,D ∩ σ) is a positive geometry of
dimension n− 1 and

ResD(ϖσ) = ϖD∩σ.

The base case (n = 0) is:

▶ if X = σ = point, then ϖσ = 1.
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Main messages

▶ “Positivity” is a red herring. No need for the domain σ to be real.

a
bσ

⇝ ϖσ = dlog
(
z− b
z− a

)
.

▶ Existence of a canonical form is always guaranteed, but uniqueness is
really the key issue.

The 1-dimensional case
Let X be a compact Riemann surface, a,b ∈ X distinct. There always exists
a logarithmic form ω on X \ {a,b} with Resb(ω) = 1 and Resa(ω) = −1. It is
unique if and only if X has genus zero.

▶ Mixed Hodge theory provides a natural non-recursive definition of
“positive geometries” (genus zero pairs) and their canonical forms. The
properties of canonical forms (e.g., recursion) are consequences of the
definition.

▶ Separates the tasks of proving that something is a “positive geometry”
and of computing the canonical form + gives tools for computations.
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Main theorem

Let X be a compact complex algebraic variety of dimension n, and Y ⊂ X a
closed subvariety such that X \ Y is smooth.

Theorem (Brown–D.)
Assume that (X, Y) has genus zero. We construct a linear map

Hn(X, Y) −→ Ωn
log(X \ Y)

σ 7−→ ϖσ

It associates to an n-chain σ with ∂σ ⊂ Y a logarithmic n-form ϖσ , called
its canonical form. It satisfies:
▶ recursion;
▶ invariance under triangulation;
▶ invariance under modification (e.g., blow-up);
▶ functoriality;
▶ etc.
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First ingredient: Poincaré duality

▶ Relative homology: Hn(X, Y) 3 [σ] with ∂σ ⊂ Y.

▶ Related to locally finite homology / compactly supported cohomology:

Hn(X, Y) ' Hlf
n(X \ Y) ' Hn

c (X \ Y)∨.

▶ Therefore:

Poincaré duality

Hn(X, Y) ' Hn(X \ Y).
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Logarithmic forms



Normal crossing divisors

Definition
Let X be a smooth complex variety. A hypersurface D ⊂ X is called a
normal crossing divisor if around every point of D one can find local
holomorphic coordinates (z1, . . . , zn) on X such that D is defined by the
vanishing locus {z1 · · · zr = 0} for some r ∈ {1, . . . ,n}.

y2 = x2 y2 = x2 + x3

normal crossing divisors

y(x− y)(x+ y) = 0 y2 = x3

NOT normal crossing divisors
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Logarithmic forms

Let X be a smooth complex variety, and D ⊂ X a normal crossing divisor.

Definition
A form on X \ D has logarithmic poles along D if in local coordinates
(z1, . . . , zn) where D = {z1 · · · zr = 0} it can be expressed as a linear
combination of forms

α ∧
dzi1
zi1
∧ · · · ∧

dzis
zis

where α is holomorphic on X and 1 ⩽ i1 < · · · < is ⩽ r.

▶ Residues of logarithmic forms:

Res{zr=0}
(
η ∧ dzrzr

)
= η|{zr=0}

(for η a logarithmic form that does not involve dzr
zr ).
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Some remarkable facts in complex algebraic geometry

Let U be a smooth complex variety, e.g., U = PnC \ {f = 0}.

▶ One can view U ⊂ U where U is a compact smooth complex variety and
D := U \ U is a normal crossing divisor. (Hironaka’s resolution of
singularities.)

▶ The space

Ωk
log(U) := {k-forms on U with logarithmic poles along D}

is a finite dimensional vector space, independent of the choice of U.
▶ A form ω ∈ Ωk

log(U) is said to be logarithmic at infinity.
▶ It is automatically closed: dω = 0.

▶ These facts are consequences of mixed Hodge theory.
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Basics of mixed Hodge theory



Classical Hodge theory

Theorem (Hodge, 1941)
Let X be a smooth projective complex variety. Then

Hn(X;C) =
⊕
p+q=n

Hp,q(X)

where Hp,q(X) is the space of cohomology classes which can be
represented by forms of type (p,q), i.e., with p dz’s and q dz’s.

Example: compact Riemann surfaces
Let X be a compact Riemann surface of genus g. Then

H1(X;C) = H1,0(X)⊕ H0,1(X)

where a basis ω1, . . . , ωg of H1,0(X) is given by global forms on X and a
basis of H0,1(X) by their conjugates ω1, . . . , ωg.
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Pure Hodge structures

Definition (pure Hodge structure)
A pure Hodge structure of weight n is a finite dimensional Q-vector space
H together with a decomposition

HC := H⊗Q C =
⊕
p+q=n

Hp,q such that Hp,q = Hq,p.

▶ The Hodge numbers:

hp,q = dimHp,q = hq,p.

▶ The Hodge filtration:
FkHC =

⊕
p+q=n
p⩾k

Hp,q .
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Mixed Hodge structures

Definition (mixed Hodge structure)
A mixed Hodge structure is a finite dimensional Q-vector space H together
with

– an increasing filtration W on H called the weight filtration;
– a decreasing filtration F on HC called the Hodge filtration;

such that for each n, F induces on grWn H := WnH/Wn−1H a pure Hodge
structure of weight n.

▶ As a first approximation, a mixed Hodge structure is a collection of pure
Hodge structures grWn H of different weights.

▶ It has Hodge numbers hp,q for all p,q.

Theorem (Deligne, 1970s)
There is a canonical mixed Hodge structure on all (relative) (co)homology
groups of all (pairs of) complex varieties.
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The role of logarithmic forms

Let U be a smooth complex variety, compactified by U such that D := U \ U is
a normal crossing divisor.

▶ The filtrations W and F on H•(U;C) come from filtrations of the de
Rham complex of forms on U with logarithmic singularities along D.

▶ A consequence of the general formalism: all global logarithmic forms
are closed, the morphism

Ωk
log(U) −→ Hk(U;C)
ω 7−→ [ω]

is injective, and its image is identified with Fk Hk(U;C).
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Genus and combinatorial rank



Genus and combinatorial rank

Consider the mixed Hodge structure on Hn(X, Y), where n = dim(X).

Definition (genus)
The genus of the pair (X, Y) is the sum of Hodge numbers

g(X, Y) = h1,0 + h2,0 + · · ·+ hn,0.

▶ Counts obstructions for the uniqueness of a canonical form.

Definition (combinatorial rank)
The combinatorial rank of the pair (X, Y) is the Hodge number

cr(X, Y) = h0,0.

▶ Counts canonical forms. It is a “tropical” invariant.

15



Genus and combinatorial rank

Consider the mixed Hodge structure on Hn(X, Y), where n = dim(X).

Definition (genus)
The genus of the pair (X, Y) is the sum of Hodge numbers

g(X, Y) = h1,0 + h2,0 + · · ·+ hn,0.

▶ Counts obstructions for the uniqueness of a canonical form.

Definition (combinatorial rank)
The combinatorial rank of the pair (X, Y) is the Hodge number

cr(X, Y) = h0,0.

▶ Counts canonical forms. It is a “tropical” invariant.

15



How to compute the genus?

▶ For X a smooth compact variety,

g(X) = hn,0 = dim{n-forms on X}

is usually called the “geometric genus”.

▶ The genus is a birational invariant of smooth varieties.

▶ For a smooth hypersurface X ⊂ PnC of degree d, we have

g(X) =
(
d− 1
n

)
,

and in particular
g(X) = 0 ⇐⇒ d ⩽ n.

▶ Bound on the genus of a pair:

g(X, Y) ⩽ g(X) +
∑
I̸=∅

g(YI)

where Y = Y1 ∪ · · · ∪ YN and YI =
∩
i∈I Yi.
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Examples of genus zero pairs

▶ For Hi ⊂ PnC hyperplanes and H =
∪
i Hi, the pair (P

n
C,H) has genus zero.

▶ In dimension 2, the same holds for unions of hyperplanes and quadrics.

▶ The nodal and cuspidal cubics have genus zero.
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The corner residue map

Let X be a compact complex variety of dimension n, and Y ⊂ X be a closed
subvariety such that X \ Y is smooth.

Definition (corner residue map)
The composition

R : Ωn
log(X \ Y) ' Fn Hn(X \ Y;C) PD' F0 Hn(X, Y;C)↠ H0,0

n (X, Y;C)

is called the corner residue map.

▶ If Y is a normal crossing divisor, it is computed by n-fold residues in the
“corners” of Y.

▶ It is a surjective linear map.

Easy lemma
The kernel of R has dimension g(X, Y).
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Construction of canonical forms

If (X, Y) has genus zero then one can consider the composition

Hn(X, Y)↠ H0,0
n (X, Y) and R−1 : H0,0

n (X, Y;C) ∼→ Ωn
log(X \ Y).

It produces canonical forms

Hn(X, Y) −→ Ωn
log(X \ Y)

σ 7−→ ϖσ

▶ In general, for g(X, Y) = g, canonical forms are well-defined modulo the
g-dimensional vector space ker(R).

The simple normal crossing case
Let D = D1 ∪ · · · ∪ DN be a simple normal crossing divisor. Then for every
σ ∈ Hn(X,D), the canonical form ϖσ is characterized by the equalities

Resi1,...,in(ϖσ) = ∂i1,...,in(σ)

for all i1, . . . , in ∈ {1, . . . ,N}.
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Examples



Nodal cubic

σ

▶ Take X = P2C and Y = {y2 = x2 + x3}.
▶ It is a genus zero pair with cr = 1.
▶ The canonical form of σ is

ϖσ = − 2xdx ∧ dy
y2 − x2 − x3 .
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Cuspidal cubic and line

σ

▶ Take X = P2C and Y = {y2 = x3} ∪ {x = 1}.
▶ It is a genus zero pair with cr = 1.
▶ The canonical form of σ is

ϖσ =
2xdx ∧ dy

(1− x)(y2 − x3) .
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A non-recursive example

▶ Take X = E× P1C where E is the elliptic curve

E : y2 = x3 − 4x.

▶ Consider the isogenous curve π : E′ 2:1→ E

E′ : y2 = x3 + x

and let Y be the Zariski closure of the image of E′ → X given by (π, x).

▶ Then (X, Y) has genus 0 with cr = 2.

It is not recursive...
... because g(Y) = 1. It is not a “positive geometry” according to the
current definition.
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Hyperplane arrangements and convex polytopes

▶ For hyperplanes Hi in PnC, the pair (PnC,H0 ∪ · · · ∪ HN) has genus zero.
▶ Work on Cn = PnC \ H0 with affine hyperplanes H1, . . . ,HN.

▶ Hyperplanes defined over R⇝ a basis of Hn(PnC,H0 ∪ · · · ∪ HN) is given
by bounded regions (polytopes).

▶ The space of logarithmic forms is well-understood (Orlik–Solomon). It
is spanned by the forms

ωI =
∧
i∈I

dlog(fi) where Hi = {fi = 0}.

Theorem (Brown–D.)
For P ∈ Hn(PnC,H0 ∪ · · · ∪ HN), we have the formula

ϖP =
∑
I

∂I(P)ωI

where the sum ranges over the non-broken circuit basis.
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Example: the square pyramid

S

1

2

3

4

S

The canonical form of the square pyramid

ϖP = −
1
2Cyc{1,2,3,4}(ω1 ∧ ω2 ∧ ω3) + Cyc{1,2,3,4}(ω1 ∧ ω2) ∧ ω5

24



Thank you!

25



How to tell whether a form is logarithmic?

y(x− y)(x+ y) = 0

Warning

The form ω =
dx ∧ dy

y(x− y)(x+ y) is NOT logarithmic.

▶ Proof: one resolves the singularities by the change of coordinates

(u, v) =
(
x, yx

)
for which

ω =
du ∧ dv

u2v(1− v)(1+ v)
has a double pole at u = 0.
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How to tell whether a form is logarithmic? (2)

y2 = x3

Warning

ω =
dx ∧ dy
y2 − x3 is NOT logarithmic.

ω′ =
xdx ∧ dy
y2 − x3 is logarithmic.

▶ Proof: one resolves singularities by working in coordinates

(u, v) =
(
x2
y ,

y2
x3

)
for which

ω =
du ∧ dv
u2v(v− 1) and ω′ =

du ∧ dv
v− 1 .
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