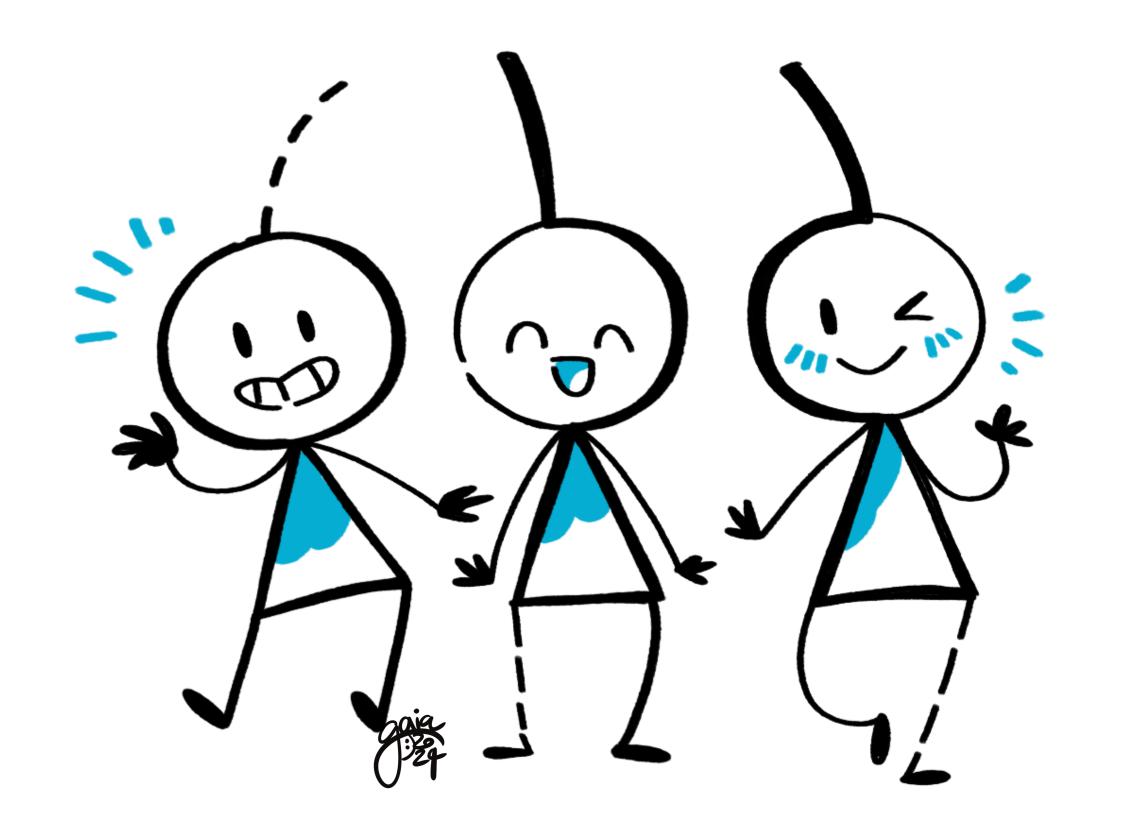
Taming IBPs with Transverse Integration

@ Holonomic techniques for Feynman Integrals



Gaia Fontana, University of Zürich with Vsevolod Chestnov & Tiziano Peraro

arXiv:2409.04783

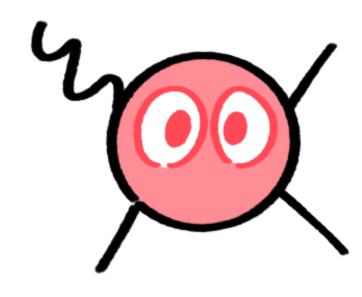
Max Planck Institute for Physics, 14/10/2024

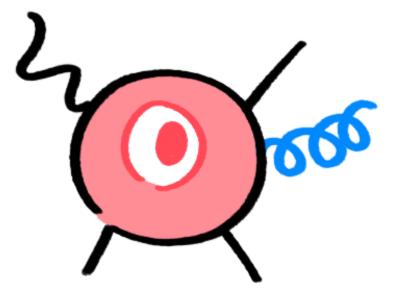
Precision era @ colliders

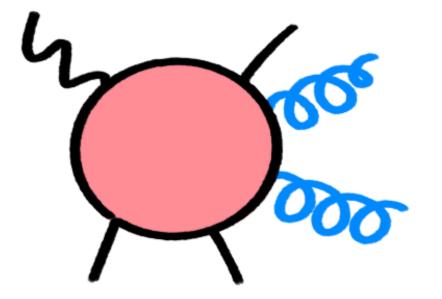
- Precision physics as
 - test of the Standard model
 - gate to new physics

- High-Lumi upgrade of LHC :
- theory and experiments must have comparable uncertainties
 - needed: %-level accuracy:
 - perturbation theory @ NNLO and often N3LO
 - diagrams with increasing no. of loops, legs & mass scales









Part 0: Background

A dictionary for Feynman integrals

- LEGO® blocks of perturbative QFT beyond tree level
- Key ingredient of phenomenological predictions
- Rich and interesting mathematical structures

Integral Family:

defined by a list of generalised denominators $F \leftrightarrow \{D_{F,1}, \dots, D_{F,n}\}$

Integral belonging to a family

$$I_{F;\vec{a}}[N] = I_{F;a_1\cdots a_n}[N] = \int \prod_{j=1}^{\ell} d^D k_j \; \frac{N}{\prod_{j=1}^n D_{F,j}^{a_j}}, \qquad N = \text{ polynomial in } k_i$$

Numerators are removed via tensor reduction

$$\rightarrow N = 1$$
 for IBPs

Generalised denominators have the form

$$I_{F;\vec{a}} = \int \prod_{j=1}^{\ell} d^{D}k_{j} \frac{1}{\prod_{j=1}^{n} D_{F,j}^{a_{j}}}$$

$$D_{F,j} = l_j^2 - m_j^2$$

$$D_{F,j} = l_j \cdot v_j - m_j^2$$

 l_{j} linear combination of k_{j} , v_{j} linear combination of p_{j}

We distinguish:

- Proper denominators: $D_{F,j}$ such that $a_j > 0$
- . Irreducible scalar products (ISPs): $D_{F,j}$ such that $a_j \leq 0$

- Sectors, $S_{F,\vec{a}}$: integrals with the same set of proper denominators
 - Iteratively, one can define also subsectors/parent sectors
- Corner integral of a sector: integral with $a_j \in \{0,1\}$

Integral decomposition

why?

- Extremely large number of integrals contributing to an amplitude
- Properties/symmetries of an amplitude manifest only after the reduction
- Important for the calculation of the integrals

Integral decomposition

Reduction into a basis of linearly independent master integrals $\{G_i\} \subset \{I_i\}$

$$I_j = \sum_{k} c_{jk} G_{k \text{ integrals}}^{\text{master}}$$

 $\{G_i\}$ = minimal linearly independent set

Laporta algorithm

Feynman integrals in dimensional regularization obey linear relations, e.g. Integration By Parts identities

+ Lorentz Invariance ids, symmetry relations, ...

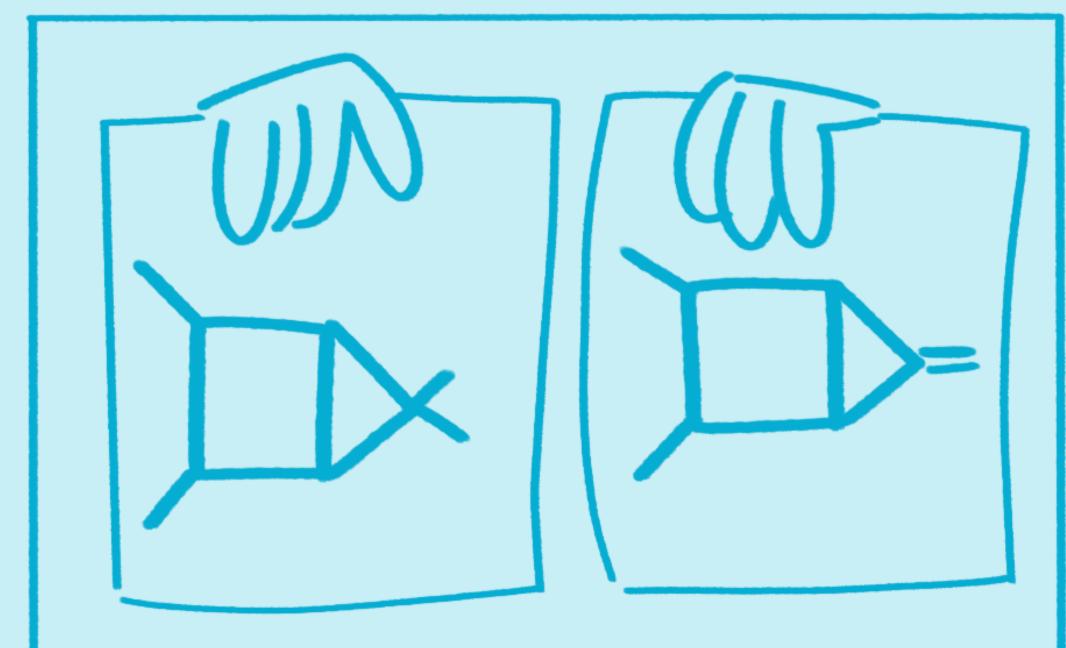
[Chetyrkin, Tkachov (1981), Laporta (2000)]

$$\int \left(\prod_{i=1}^{\ell} d^{\mathcal{D}} k_i\right) \frac{\partial}{\partial k_i^{\mu}} \left(\frac{v_j^{\mu}}{D_1^{a_1} \dots D_n^{a_n}}\right) = 0, \qquad v^{\mu} = \begin{cases} p_i^{\mu} = \text{external} \\ k_i^{\mu} = \text{loop} \end{cases}$$

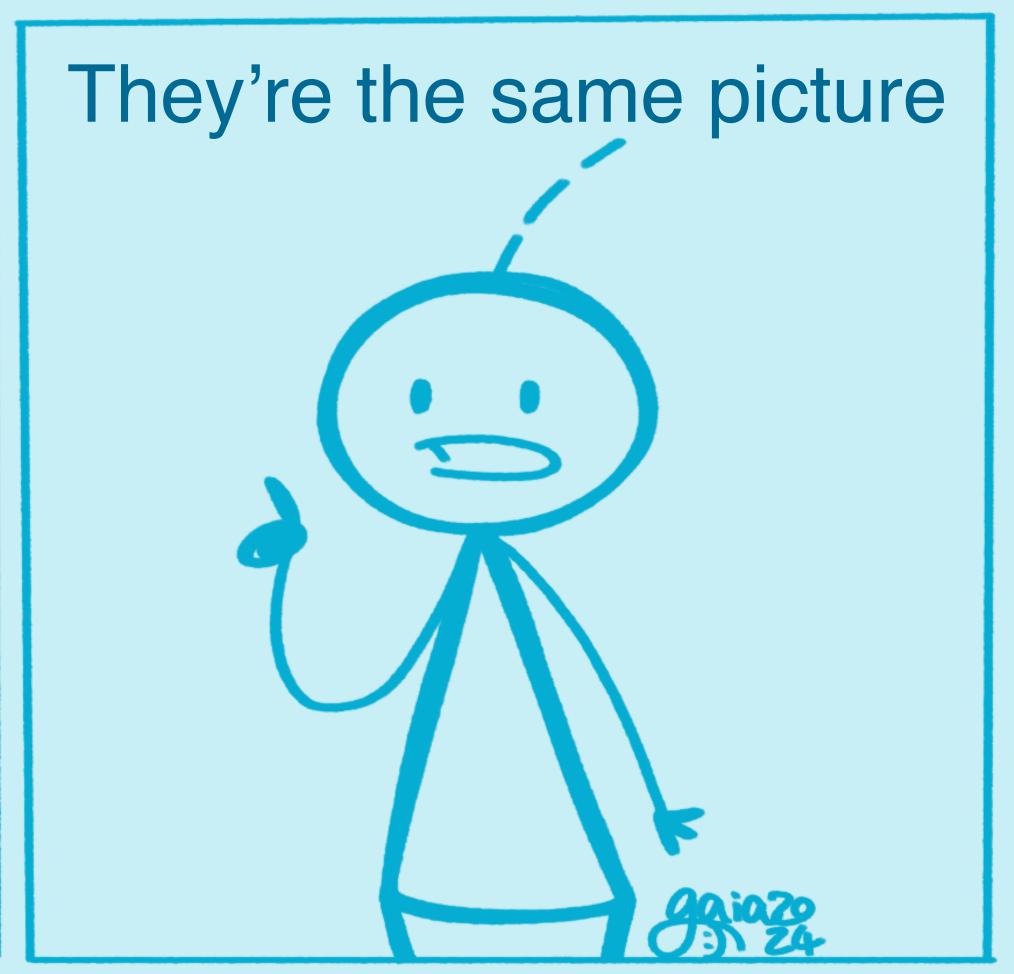
reduction as solution of a large and sparse system of identities

Computational bottleneck in state-of-the-art calculations

Part 1: The main idea



We need you to find the differences between these two pictures



Transverse integration id.s

- A way to simplify the identities in the Laporta system
- Formulation in terms of angular integrations in [Mastrolia, Peraro, Primo 2017]

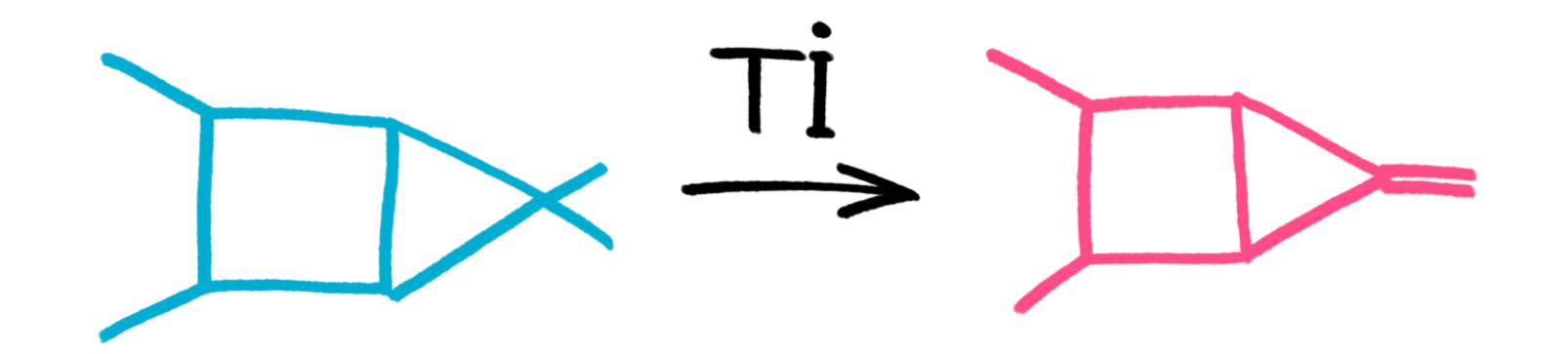
Idea:

Given a family, map its sectors with fewer external legs (or that are factorizable into fewer loops products) to new families having fewer invariants & fewer irreducible scalar products

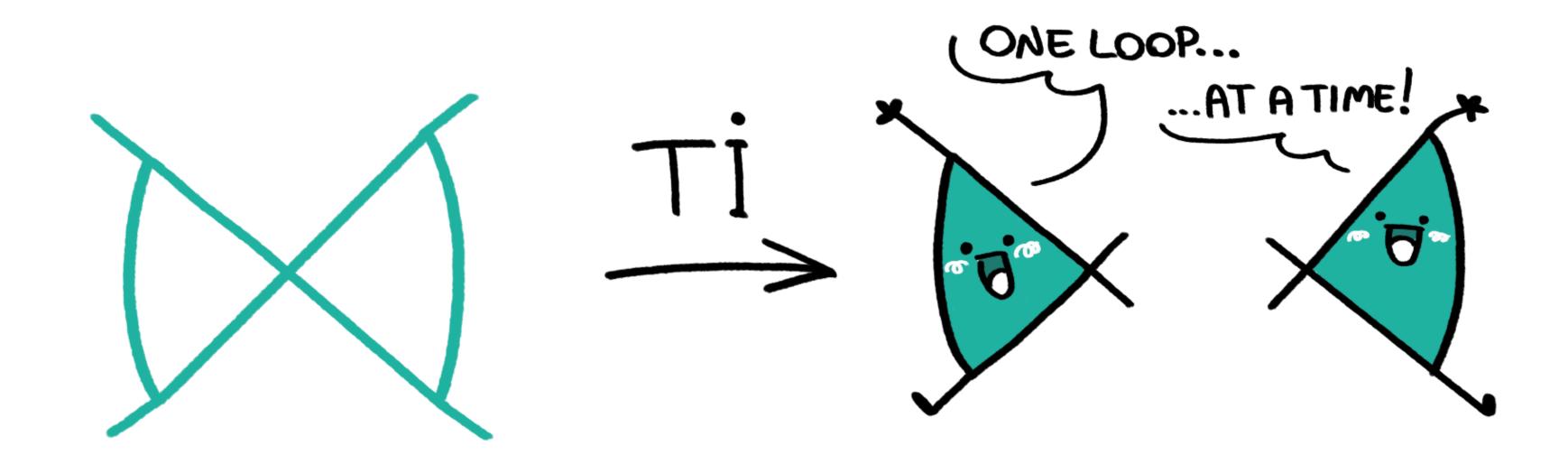
⇒ simpler identities

- Already used in tensor/ integrand reduction and numerical unitarity
- Impact on IBP reduction still unexplored

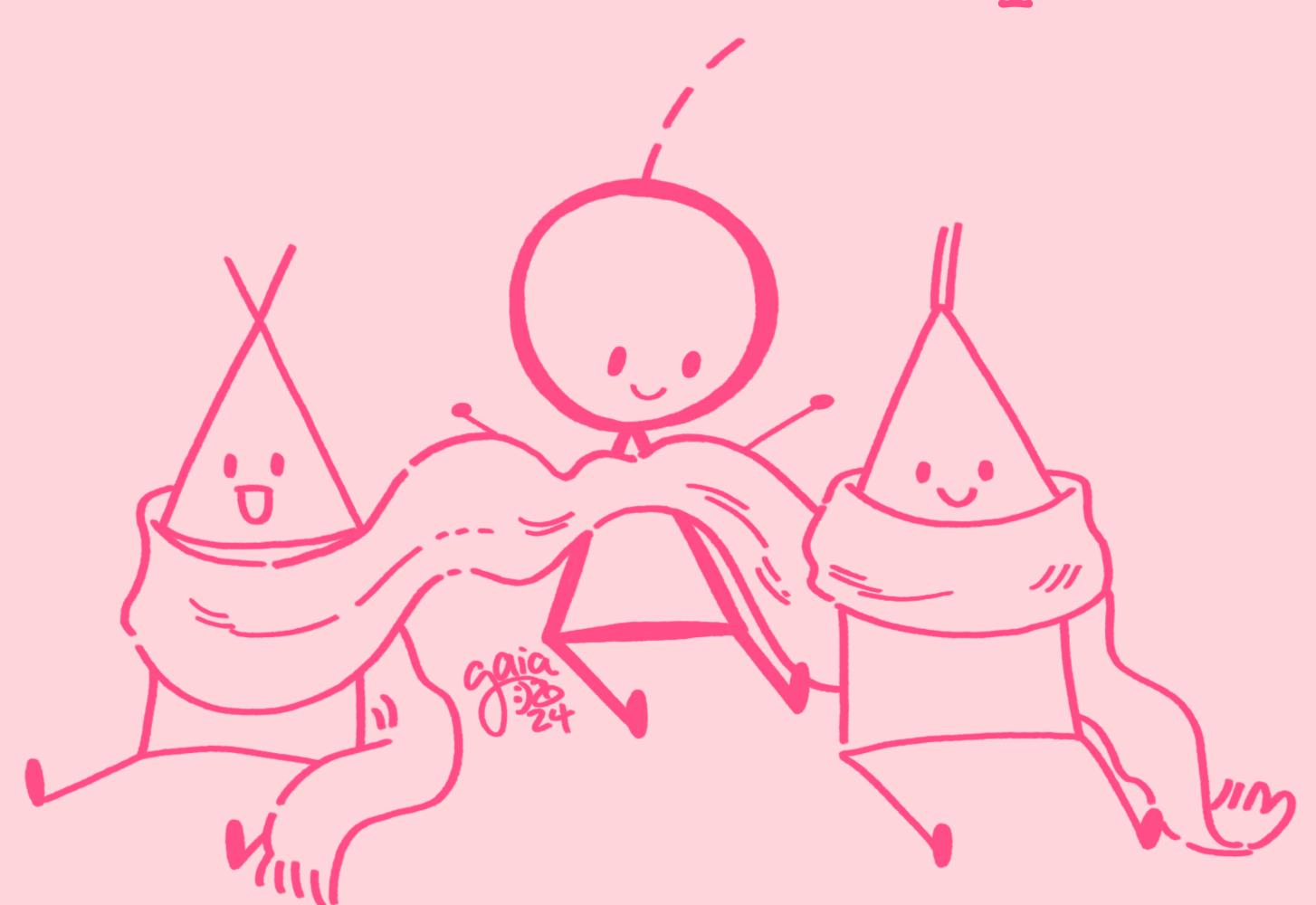
Application/1 \rightarrow tested on cutting edge examples



Application/ $2 \rightarrow$ only tested in simple cases (for now!)



Part 2: Practical example

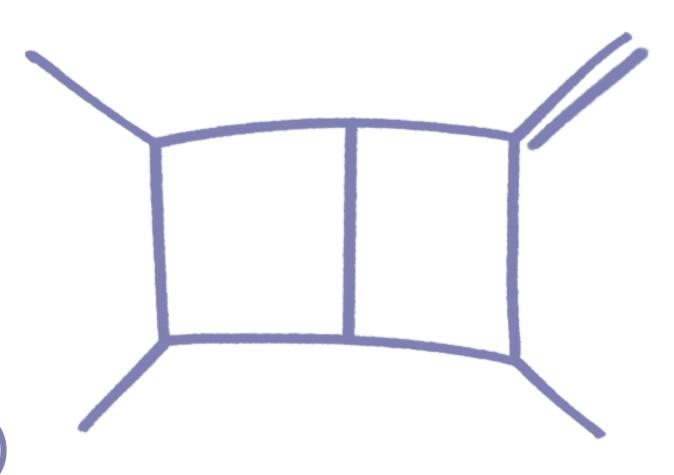


Practical example

Double box family with one external mass integral

$$s = (p_1 + p_2)^2$$
, $t = (p_1 + p_3)^2$, $m^2 = p_4^2$, $p_1^2 = p_2^2 = p_3^2 = 0$

Top sector $S_{\mathrm{db};11111100}$

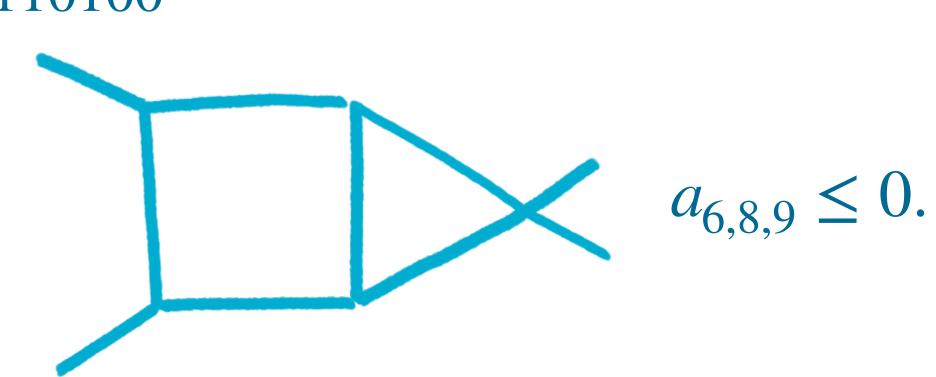


9 generalised den.s
7 proper denominators
2 ISPs
3 invariants

Double box (db)

$$D_{\text{db},1} = k_1^2$$
 $D_{\text{db},2} = (k_1 + p_1)^2$ $D_{\text{db},3} = (k_1 + p_1 + p_2)^2$ $D_{\text{db},4} = (k_1 + k_2)^2$ $D_{\text{db},5} = k_2^2$ $D_{\text{db},6} = (k_2 - p_1 - p_2 - p_3)^2$ $D_{\text{db},7} = (k_2 - p_1 - p_2)^2$ $D_{\text{db},8} = k_2 \cdot p_1$ $D_{\text{db},9} = k_1 \cdot (-p_1 - p_2 - p_3)$

Sector with fewer ext legs



9 generalised den.s 6 proper denominators 3 ISPs 3 invariants

BUT if we consider the boxtriangle as a NEW family = TI family ...

Box triangle (bt) $D_{\text{bt},1} = k_1^2$

$$D_{\text{bt},1} = k_1^2$$
 $D_{\text{bt},4} = (k_1 + k_2)^2$

$$D_{\text{bt},2} = (k_1 + p_1)^2$$
 $D_{\text{bt},3} = (k_1 + p_1 + p_2)^2$

$$D_{\mathrm{bt},5} = k_2^2$$

$$D_{\text{bt},3} = (k_1 + p_1 + p_2)^2$$

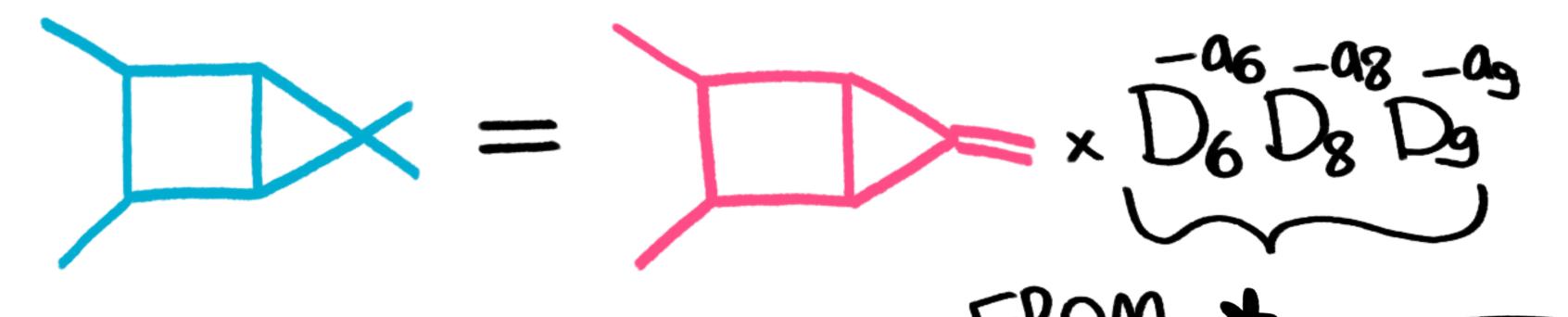
$$D_{\text{bt},6} = (k_2 - p_1 - p_2)^2$$

$$D_{\text{bt},7} = k_2 \cdot p_2$$

7 generalised den.s 6 proper denominators 1 ISPs 1 invariant

We have the map...

$$I_{\text{db};a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9} = I_{\text{bt};a_1 a_2 a_3 a_4 a_5 a_7 0} [D_{\text{db},6}^{-a_6} D_{\text{db},8}^{-a_8} D_{\text{db},9}^{-a_9}]$$



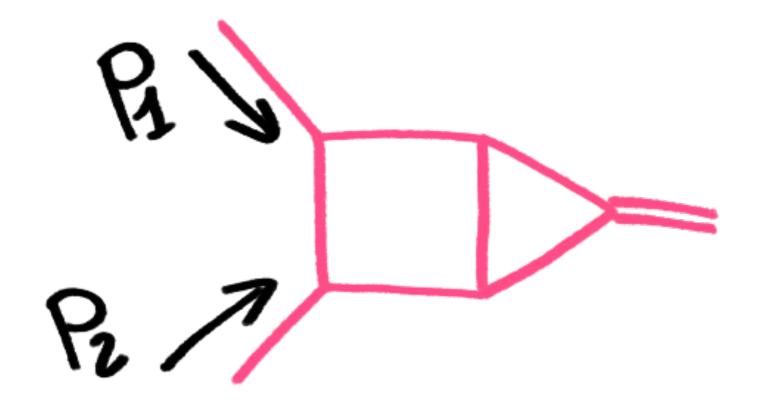
- Numerator needs to be mapped to generalised denominators of new family bt
- Mapping can be done via transverse integration

Blackboard time!

How to do transverse integration

Decomposition of a vector in parallel and transverse component

$$v^{\mu} = v^{\mu}_{\parallel} + v^{\mu}_{\perp}, \quad v^{\mu}_{\parallel} = c_1 p_1^{\mu} + c_2 p_2^{\mu}$$



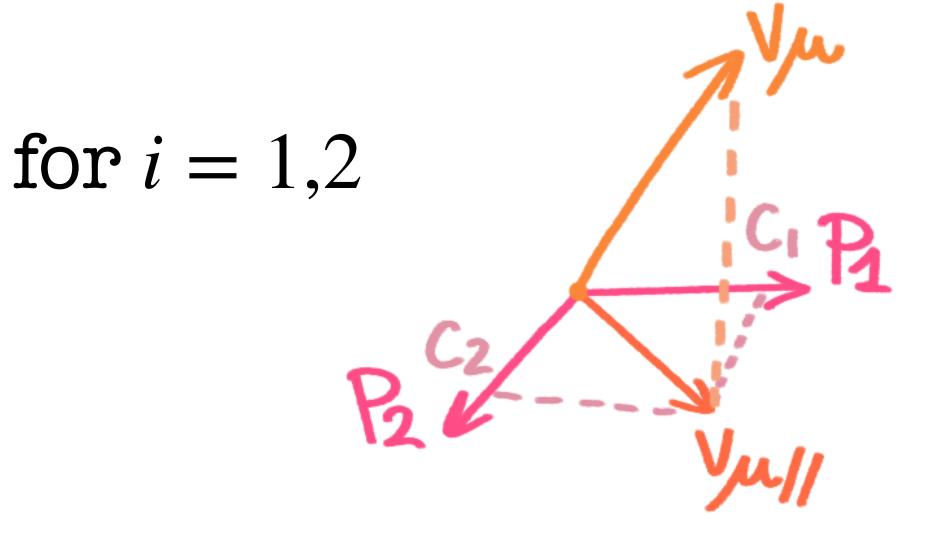
Parallel space spanned by the external legs of the new bt family

With

$$v_{\perp} \cdot p_i = 0, \qquad v \cdot p_i = v_{\parallel} \cdot p_i$$

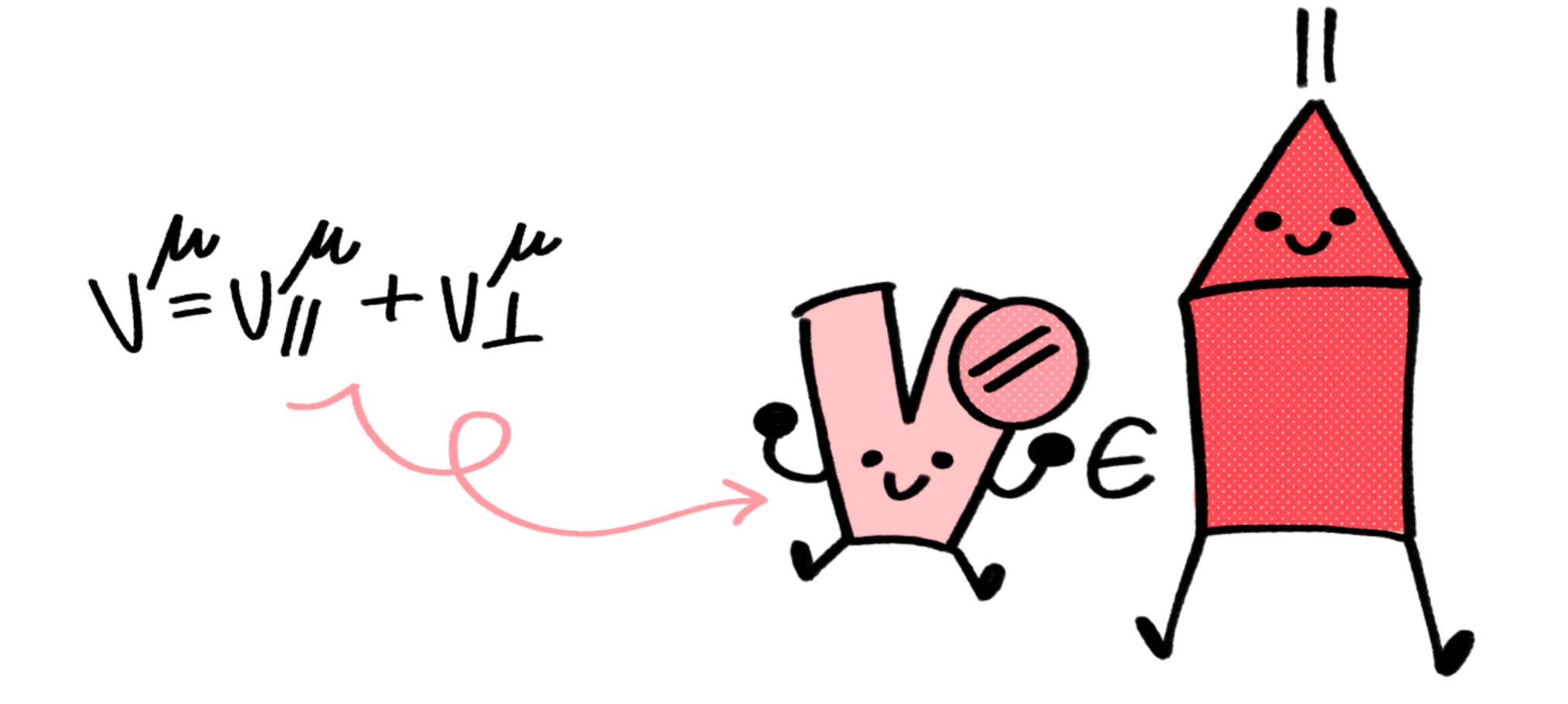
$$v \cdot p_i = v_{\parallel} \cdot p_i$$

$$p_{1,\perp}^{\mu} = p_{2,\perp}^{\mu} = 0$$



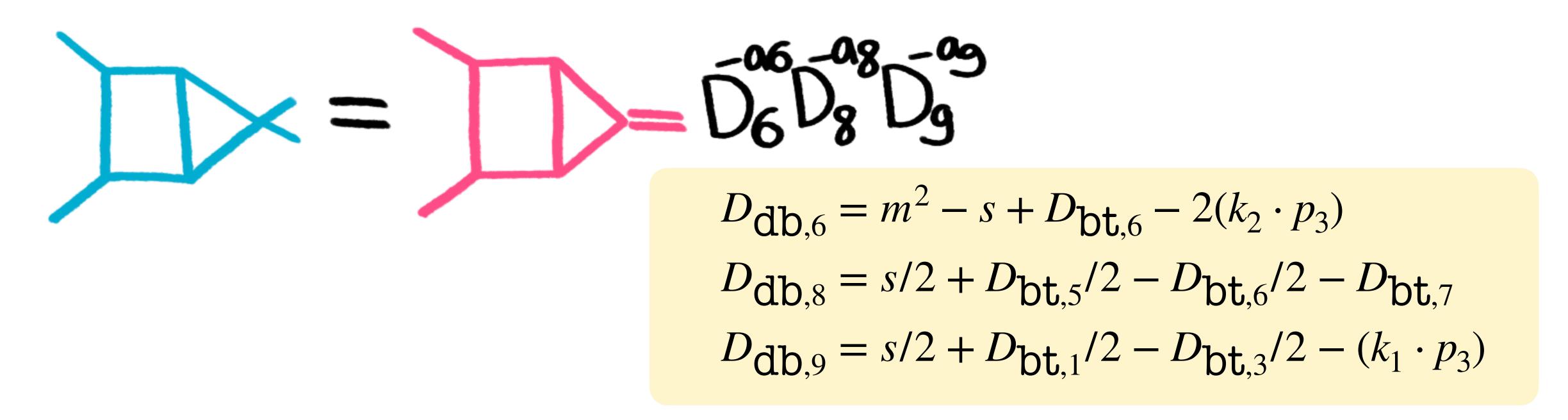
Coefficients of the parallel space decomposition found as

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \frac{2}{s} \begin{pmatrix} p_2 \cdot v \\ p_1 \cdot v \end{pmatrix} \qquad v_{\parallel}^{\mu} = c_1 p_1^{\mu} + c_2 p_2^{\mu}$$



In practice

First, rewrite the extra scalar products of db as functions of the ones of bt



We are left with integrals of the family bt of the form

$$I_{\text{bt};\vec{a}}[(k_1 \cdot p_3)^{\beta_1}(k_2 \cdot p_3)^{\beta_2}] = \times (K_1R_3)^{\beta_1}(k_2 \cdot p_3)^{\beta_2}$$

Rewrite the scalar products as

$$(k_1 \cdot p_3) = (k_1 \cdot p_{3,\parallel}) + (k_{1,\perp} \cdot p_3)$$
$$(k_2 \cdot p_3) = (k_2 \cdot p_{3,\parallel}) + (k_{2,\perp} \cdot p_3)$$

First RHS term becomes

$$(k_i \cdot p_{3,\parallel}) = \frac{2}{s} \Big((k_i \cdot p_1)(p_2 \cdot p_3) + (k_i \cdot p_2)(p_1 \cdot p_3) \Big)$$

Only scalar products remaining are $(k_{1,\perp} \cdot p_3) \& (k_{2,\perp} \cdot p_3)$

$$I_{\text{bt};\vec{a}}[(k_{1,\perp} \cdot p_3)^{\beta_1}(k_{2,\perp} \cdot p_3)^{\beta_2}] = p_{3\mu_1} \cdots p_{3\mu_{\beta_1}} p_{3\nu_1} \cdots p_{3\nu_{\beta_2}} I_{\text{bt};\vec{a}}[k_{1,\perp}^{\mu_1} \cdots k_{1,\perp}^{\mu_{\beta_1}} k_{2,\perp}^{\nu_2} \cdots k_{2,\perp}^{\nu_{\beta_2}}],$$

Tensor integrals can be decomposed in products of tensors and form factors

egrals can be decomposed in products of tensors and form factors
$$= \left[K_{i}^{\mu} K_{j}^{\nu} \dots \right] = \sum_{j} C_{j} T_{j}^{\mu\nu} \dots$$

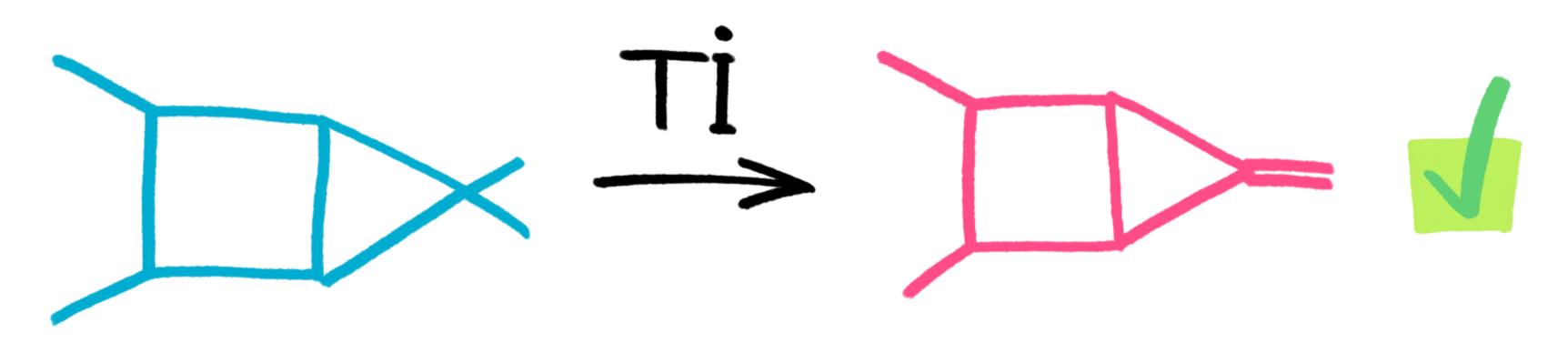
$$= \sum_{\substack{l \in \mathcal{N} \\ l \in \mathcal{N} \\ l \in \mathcal{N} \\ l \in \mathcal{N}}} \sum_{\substack{l \in \mathcal{N} \\ l \in \mathcal{N} \\ l \in \mathcal{N} \\ l \in \mathcal{N}}} \sum_{\substack{l \in \mathcal{N} \\ l \in \mathcal{N}$$

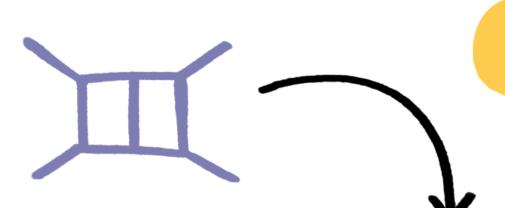
After this step we have only scalar products of $(k_{i,\perp} \cdot k_{j,\perp})$

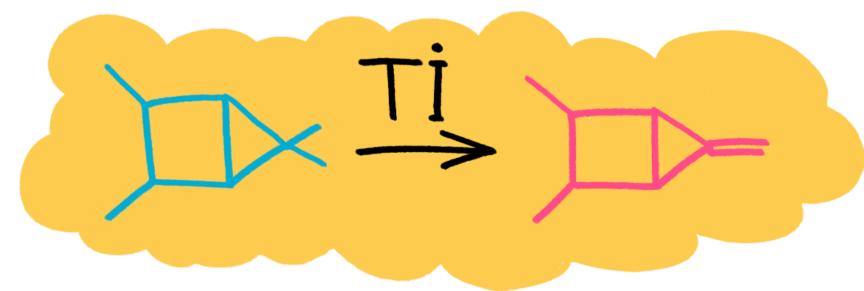
That we can rewrite using $(k_{i,\perp} \cdot k_{i,\perp}) = (k_i \cdot k_i) - (k_{i,\parallel} \cdot k_{i,\parallel})$

with
$$(k_{i,\parallel} \cdot k_{j,\parallel}) = \frac{2}{s} \Big((k_i \cdot p_1)(k_j \cdot p_2) + (k_i \cdot p_2)(k_j \cdot p_1) \Big)$$

Successfully mapped db in bt

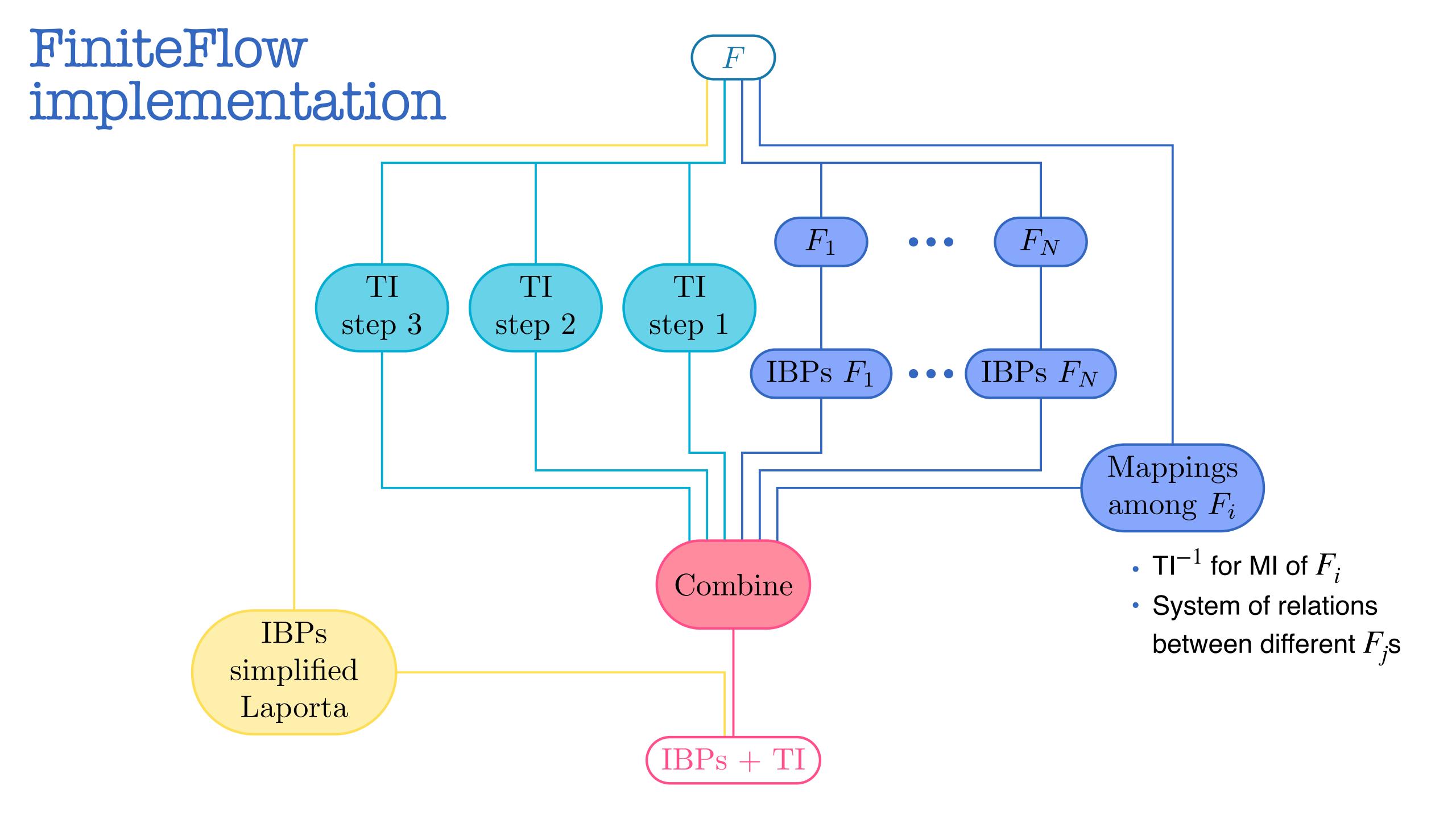


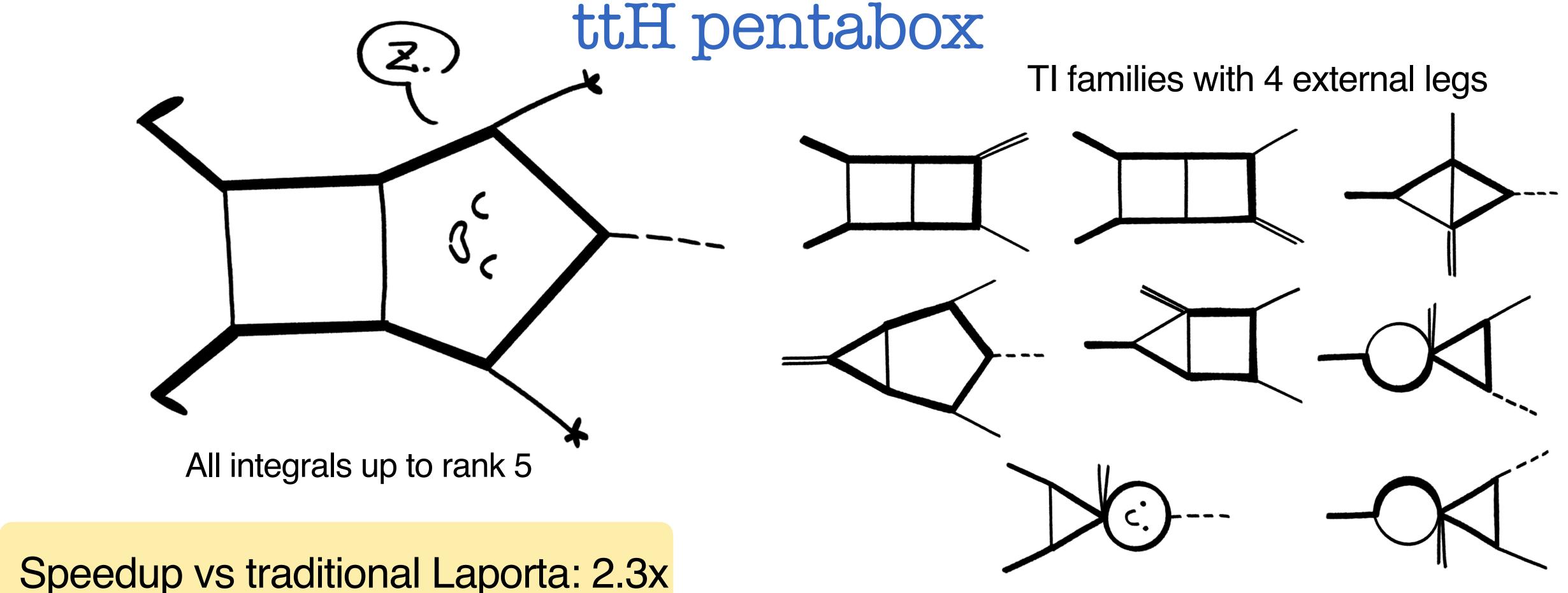




$$K_{i\perp}^{\mu} K_{i\perp}^{\lambda} \dots = \sum_{ij}^{j} C_{ij}^{\mu} T_{j}^{\mu} K_{i\perp}^{\mu} K_{j\perp}^{\mu} K_{i\perp}^{\mu} K_{j\perp}^{\mu} K_{i\perp}^{\mu} K_{j\perp}^{\mu} K_{j\perp}^{\mu} K_{i\perp}^{\mu} K_{j\perp}^{\mu} K_{j\perp}$$

Part 3: Implementation & benchmarks





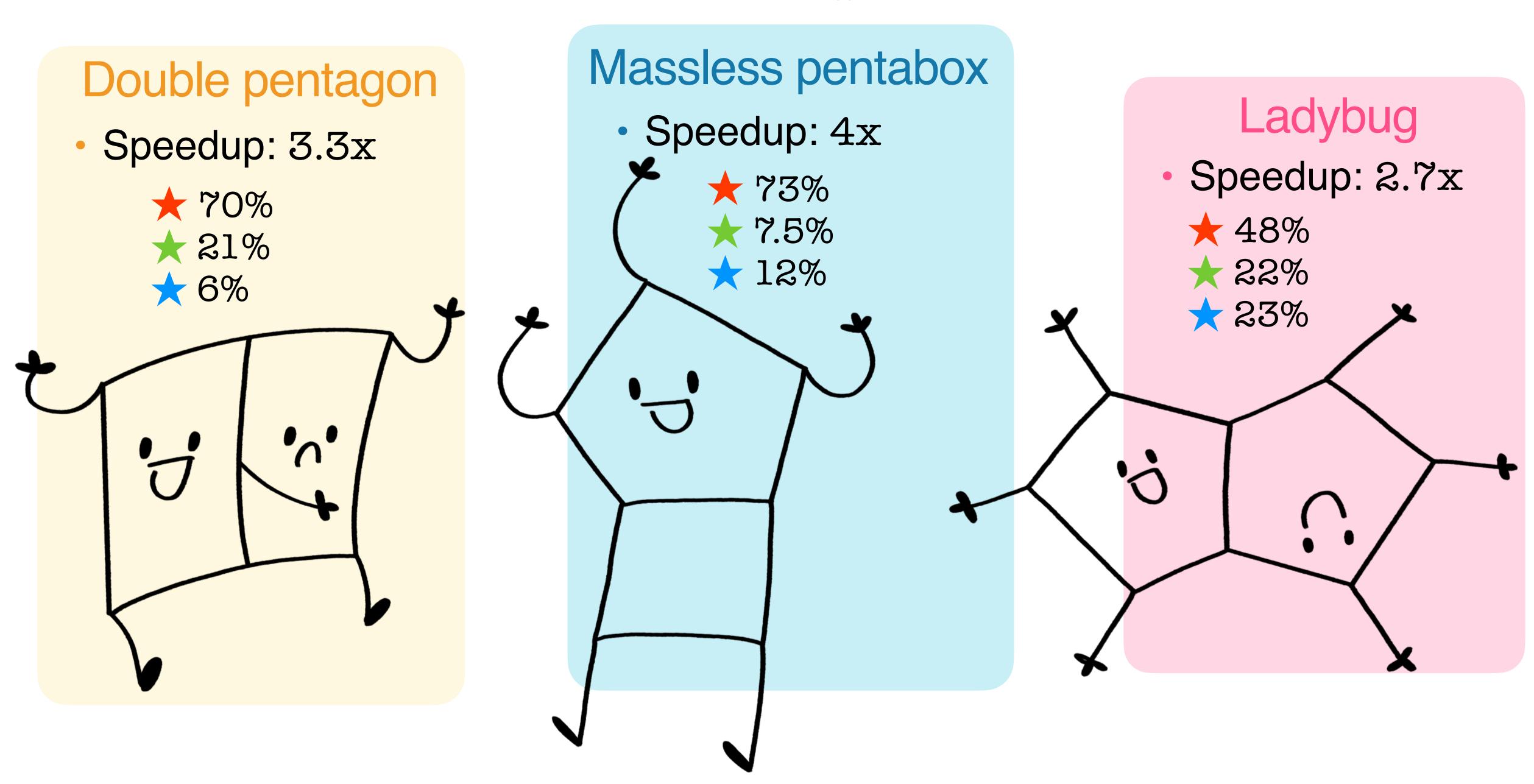
Breakdown:

** solving the simplified Laporta IBP system: 48%

* evaluating the coefficients of the TI identities: 22%

evaluating the solution of the IBP system for the TI families: 23%

More examples ...



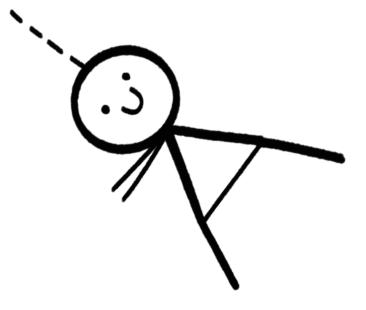
Conclusions...

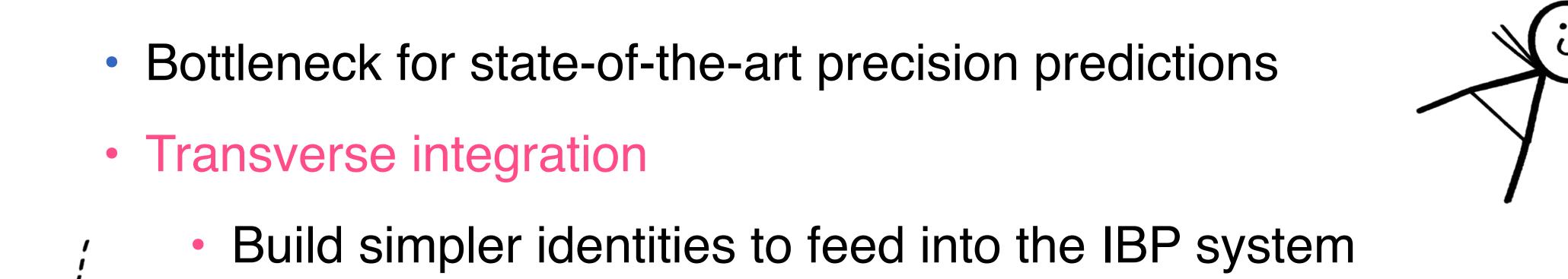
IBP reduction: key point ingredient of calculations

- Map into a new family with fewer invariants and fewer ISPs:
 - ⇒easier identities
- Substantial performance improvements in cutting-edge examples

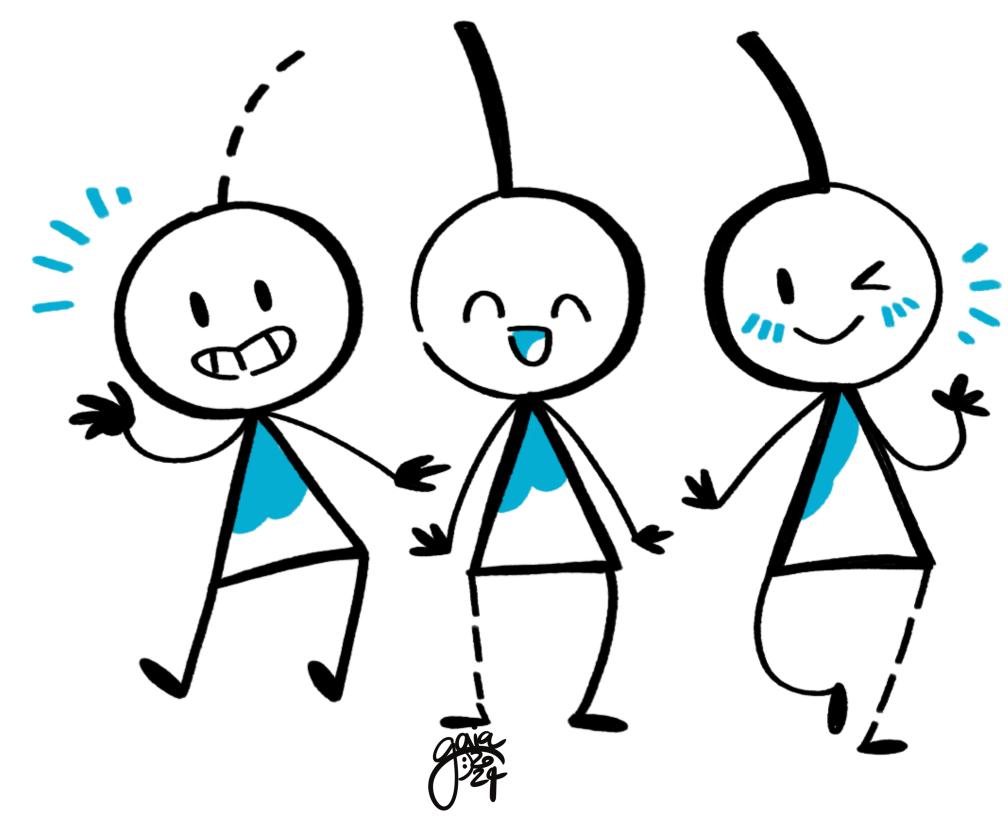
...& outlook

- Combination with syzygy techniques
- Implementation of factorizable sectors
- Optimizations + release of public package





Thank you for your attention!



More clearly... let's see what happens on

$$I_{\mathrm{bt};\vec{a}}[(k_{1,\perp} \cdot p_3) (k_{2,\perp} \cdot p_3)] = p_{3\mu} p_{3\nu} I_{\mathrm{bt};\vec{a}}[k_{1,\perp}^{\mu} k_{2,\perp}^{\nu}]$$

Tensor decomposition: $I_{\mathrm{bt};\vec{a}}[k_{1,\perp}^{\mu}\,k_{2,\perp}^{\nu}] = C_1\,g_{\perp}^{\mu\nu}$

$$C_{1} = \frac{1}{D-2} g_{\perp \mu\nu} I_{\text{bt};\vec{a}} [k_{1,\perp}^{\mu} k_{2,\perp}^{\nu}] = \frac{1}{D-2} I_{\text{bt};\vec{a}} [(k_{1,\perp} \cdot k_{2,\perp})]$$

Therefore

$$I_{\text{bt};\vec{a}}[(k_{1,\perp} \cdot p_3) (k_{2,\perp} \cdot p_3)] = \frac{1}{D-2} p_{3,\perp}^2 I_{\text{bt};\vec{a}}[(k_{1,\perp} \cdot k_{2,\perp})],$$

And
$$p_{3,\perp}^{\mu} = p_3^{\mu} - p_{3,\parallel}^{\mu}$$
 and $k_{i,\perp}^{\mu} = k_i^{\mu} - k_{i,\parallel}^{\mu}$

Everything rewritten in terms of family bt