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History
In his 1938 article on foundations of algebraic geometry, Grobner
introduced differential operators to characterize membership in
a polynomial ideal. He derived this for zero-dimensional ideals
(Macaulay's inverse systems), and he envisioned it for all ideals.
Grobner wanted algorithmic solutions. We provide them.
Wolfgang Grobner: Uber die algebraischen Eigenschaften der Integrale
von linearen Differentialgleichungen mit konstanten Koeffizienten,
Monatshefte fiir Mathematik und Physik (1939)
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Analysts made substantial contributions to this subject.

In the 1960s, Ehrenpreis and Palamodov studied solutions
to linear partial differential equations (PDE) with constant
coefficients. A main step was the characterization of
membership in a primary ideal by Noetherian operators.

Their celebrated Fundamental Principle appears in the books
Leon Ehrenpreis: Fourier Analysis in Several Complex Variables, 1970
Victor Palamodov: Linear Differential Operators w Constant Coeffs, 1970
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Four Exercises

Question 1: Solve the system of polynomial equations

X =y :xz—y22:0.

Question 2: Determine all functions ¢(x, y, z) satisfying the PDE

¢ _ Pp _ Po P

x2 ~ 9y2  Ox0z ydz? =0

We identify polynomials with linear PDE with constant coefficients.
Question 3: Which polynomials lie in the ideal
I = (2 x—yz) N (3 yhz)?

Question 4: We presented a subscheme of affine 3-space. Describe it.



Four Solutions
Answer 1: Our equations x> = y? = xz — yz? = 0 define the z-axis:
x =y = 0.

Answer 2: A sufficiently differentiable function ¢ satisfies

P _ 0% _ 2o P _
Ox2 = 9y2 T 0x0z  9ydz2

if and only if it decomposes into four summands as follows:

P(x,y,z) = &2) + (y(2)+x¢'(2)) + axy + Bx.



Four Solutions

Answer 1: Our equations x> = y? = xz — yz? = 0 define the z-axis:
x =y = 0.

Answer 2: A sufficiently differentiable function ¢ satisfies

P _ 0% _ 2o P _
Ox2 = 9y2 T 0x0z  9ydz2

if and only if it decomposes into four summands as follows:
d(x,y.2) = &(2) + (y(2) +x¥'(2)) + axy + Bx.

Answer 3: A polynomial f lies in | = (x2,y? x—yz) N (x? y?, z) if
and only if the following four conditions hold: Both f and g—; +z%
0%f of

vanish on the z-axis, and both BxDy and 3 vanish at the origin.

Answer 4: The scheme is a double z-axis with an embedded point
of length two at the origin. The arithmetic multiplicity of / is four.



Prime ldeals

Let P be a prime ideal in C[xi, ..., x,] and V/(P) its variety in C".
A polynomial f is in the ideal P if and only if  vanishes on V(P).

Setting x; = 0, view P as PDE for an unknown function ¢(z, ..., z,).

Remark
For y € C", the exponential function

z — exp(y'z) = exp(yaz1 + -+ Ynzn)

satisfies the PDE given by P if and only if y € V(P).
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Let P be a prime ideal in C[xi, ..., x,] and V/(P) its variety in C".
A polynomial f is in the ideal P if and only if  vanishes on V(P).

Setting x; = 0, view P as PDE for an unknown function ¢(z, ..., z,).

Remark
For y € C", the exponential function

z — exp(y'z) = exp(yaz1 + -+ Ynzn)
satisfies the PDE given by P if and only if y € V(P).

Proposition
Each solution to P admits an integral representation

P(z) = /V (P)exp(ytZ) du(y),

where p is a measure on the irreducible variety V(P).



Primary ldeals
y m = length(Rp/QRP) = c;:ii:zgg;

Fix a prime P of codimension ¢ in R = C|[xy, ..., xy], in Noether
position. Write F = C(uy, ..., up) for the field of fractions of R/P.

Theorem

The following sets are in bijective correspondences:

(a) P-primary ideals Q in R of multiplicity m,

(b) points in the punctual Hilbert scheme Hilb™(F[[y1,- .., yc]]),
(c) m-dimensional F-subspaces of F[z1,. .., z]

that are closed under differentiation, Inverse systems



Primary ldeals
y m = length(Rp/QRP) = c;:ii:zgg;

Fix a prime P of codimension ¢ in R = C|[xy, ..., xy], in Noether
position. Write F = C(uy, ..., up) for the field of fractions of R/P.

Theorem
The following sets are in bijective correspondences:
(a) P-primary ideals Q in R of multiplicity m,
(b) points in the punctual Hilbert scheme Hilb™(F[[y1,- .., yc]]),
(c) m-dimensional F-subspaces of F[z1,. .., z]
that are closed under differentiation, Inverse systems

(d) m-dimensional F-subspaces of the Weyl-Noether module
F®@g Dy c that are R-bi-modules, where D c = R(Ox,, ..., 0x.)-

Any basis of the F-subspace in (d) lifts to Noetherian operators
At,...,Am € Dy c. These characterize ideal membership in Q.
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Each A;in D, . is written uniquely as Zaﬁ ca”gxaaf.
Replace 0, by z to get polynomials
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The Noetherian multipliers By, ..., By, span the inverse system (c).



Ehrenpreis-Palamodov

Each A;in D, . is written uniquely as Za,ﬁ ca”gxaaf.
Replace 0, by z to get polynomials

Bi(x,z) = AI(Xaax)|8x1'—>21,...,8xcHzc for I=1,....,m.

The Noetherian multipliers By, ..., By, span the inverse system (c).

Theorem (Ehrenpreis-Palamodov Fundamental Principle)
Consider the PDE given by a P-primary ideal Q.

Any sufiiciently nice SOlution 1 has an integral representation

Z /\/ By (x,z) exp (x z) dpy(x)

for suitable measures p; supported in the variety V(P).

Conversely, all such functions are solutions.



From (a) to (d)

Algorithm (From ideal generators to Noetherian operators)

Input: Generators of a P-primary ideal Q in R = C[xy, ..., Xs].

Output: Operators A1, ..., An in the relative Weyl algebra D,
with Q = {f € C[x1,...,xn] : Aiof € P foralli}.

Xi = yi+uj forl1 <i<c,

Set ~v:R<—=F[y1,...,y], X y forct1<j<n



From (a) to (d)

Algorithm (From ideal generators to Noetherian operators)
Input: Generators of a P-primary ideal Q in R = C[xy, ..., Xs].

Output: Operators A1, ..., An in the relative Weyl algebra D,
with Q = {f € C[x1,...,xn] : Aiof € P foralli}.

Xi > yitu; for1 <i<c,

Set ~v:R<—=F[y1,...,y], X y forct1<j<n

1. Find generators of the 0-dim’l ideal | = (y1,...,yc)™ +v(Q).

2. Using linear algebra over F = C(u1, ..., up), compute a basis
{By,...,Bn} for the inverse system I+ in Flzy,. .., z].

3. Lift Bi(u,z) to obtain the Noetherian multipliers Bj(x,z).

4. Replace z by 0y to get the Noetherian operators A;(x, Ox).

Available in Macaulay?2, as part of J. Chen, Y. Cid-Ruiz, M. Harkonen,
R. Krone, A. Leykin: Noetherian operators in Macaulay2, January 2021.



Operators versus Multipliers
Input: Primary ideal Q = (xZ, x5, x1 — xax3).

Here n=3, c=m=2 and P = (x1,x).

Output in Step 4: The Noetherian operators
Ai(x,0x) =1 and Ax(x,0x) = x30x + Ox,-
Output in Step 3: The Noetherian multipliers

Bi(x,z) =1 and By(x,z)=x3z1 + 2.



Operators versus Multipliers
Input: Primary ideal Q = (xZ, x5, x1 — xax3).

Here n=3, c=m=2 and P = (x1,x).

Output in Step 4: The Noetherian operators
Ai(x,0x) =1 and Ax(x,0x) = x30x + Ox,-
Output in Step 3: The Noetherian multipliers
Bi(x,z) =1 and By(x,z)=x3z1 + 2.
Ehrenpreis-Palamodov: Solutions to ¢,,,, = ¢2,2, = ¢z, — 022 = O:
$i(z) = /1- exp(0z1+ 0z +x323) dux = &(z3) and
$2(z) = [(z2+ z1x3) - exp(0z1 + 022 + x323) djux

= 2z [exp(0z1+0z+x323)dpix + 21 [ x3 exp(0214+0224x323) d 1k
= 2 Y(z3) + z1¢'(z3).



Grobner’'s Dream

Consider any ideal | C R with associated primes Py, ..., Pg. Its
arithmetic multiplicity is amult(/) = ijzl mult;(Pj), where
multy (P) = degree(saturate(I,P)/I)
degree(P))

is the length of the largest ideal of finite length in Rp/IRp.

A differential primary decomposition of | is a list
(P1, A1), ..., (Pk, Ax) where A; is a finite subset of D, , with

| = {feR|éefePiforalldc Ajandi=1,... k}.
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Consider any ideal | C R with associated primes Py, ..., Pg. Its
arithmetic multiplicity is amult(/) = ijzl mult;(Pj), where
multy (P) = degree(saturate(I,P)/I)
degree(P))

is the length of the largest ideal of finite length in Rp/IRp.
A differential primary decomposition of | is a list
(P1, A1), ..., (Pk, Ax) where A; is a finite subset of D, , with

| = {feR|éefePiforalldc Ajandi=1,... k}.

Theorem
The size of a differential primary decomposition is at least
amult(/), and this lower bound is tight. More precisely:
(i) The ideal I has a differential primary decomposition
(Pl,.Al), ceey (Pk,.Ak) such that |.A,| = mult/(P,').
(i) If (P1, A1), ..., (Px, Ak) is any differential primary
decomposition for I, then |A;| > mult,(P;).



Macaulay 2

Computing a minimal differential primary decomposition:

il : load "modulesNoetherianOperators.m2"

i2 : R

QQlx,y,z]

i3 : I = ideal(x”"2,y"2,x*xz-y*z"2);
i4 : amult(I)

04 = 4

i5 : netList solvePDE(I)

+ 4

05 = |ideal (y, x) [{] 1 |, | dxz+dy |}]|

|ideal (z, y, x)|{] dx |, | dxdy |} |

This is Answer 2 & 3 for our double line:
Py = <X7y>7 -Al = {1,26X +ay}
’D2 = <X,y,Z>, AZ = {8X7 Bxay}



Modules

The treatment of Ehrenpreis-Palamodov in books on analysis
emphasizes PDE for vector-valued functions ¢ : C" — Ck.

[J.-E. Bjork: Rings of Differential Operators], [L. Hormander:
An Introduction to Complex Analysis in Several Variables|

In calculus we learn how to rewrite one higher-order ODE as a
system of first order ODE, and in algebraic geometry we learn
how to appreciate matrix representations of geometric objects:

Ideals — Schemes
Modules —— Coherent Sheaves

A system of ¢ linear PDE for 1 is represented by a k x ¢ matrix
with entries in R = C[x,...,x,]. The image of this matrix is a
submodule M of R¥. Primary decomposition makes sense here:

M= Min---NM,.

. and so does differential primary decomposition



Coherent Sheaves
Let M C R? be the module spanned by the columns of

0103 002 020,
03 03 0204 |-
This represents PDE for functions 1) : C* — C2. We seek
¢(Z) = (¢1(21> 22,73, 24)7 ¢2(217 22, 73, 24)) such that

! +32¢2 I A 1o _ 0
0z10z3 8212 - 07102 8222 B 8212822 8212824 -

The module M has six associated primes, namely P; = (01),

P> = (02,04), P3 = (02,03), P4 = (01,03), Ps = (01, 02),

Pe = (8% — 003, 0102 — 0304, 8% — 81(94>. Primes P4, Ps are
embedded. Arithmetic multiplicity: 1+14+1+1+441 = 9 = amult(M).

To solve the PDE, we compute a differential primary decomposition.



9?1y P _ O’y Pihy iy &by
Macaulay 2 + 57 = t %2 = T 9220z

021023 0210z 0212 0z
i1 : load "modulesNoetherianOperators.m2"
i2 : R = QQI[x1,x2,x3,x4]
i3 : M = image matrix{
{x1*x3, x1*x2, x1°2*x2 },
{ x172, x272, x172xx4} };
i4 : amult(M)
04 =9
i5 : S = solvePDE(M)

05

{ideal x1, {| 1 |}}
o]

2 2
{ideal (x2 - x1kx4, x1kx2 - x3*x4, x1 - x2*x3), {| -x4 |}}
| x2 |

{ideal (x4, x2), {| -x1 |[}}

| x3 |
{ideal (x2, x1), {| @ |, @ |, |@ [, |© [}
| 1] |dx1 | | dx2 | | dxildx2 |

{ideal (x3, x2), {| 1 |}}
| o]

{ideal (x3, x1), {| -dx1x2 |}}
|1 |

Solutions (11, 12)?




For Students

GRADUATE STUDIES
IN MATHEMATICS

Invitation to
Nonlinear Algebra

Mateusz Michatek
Bernd Sturmfels

Theorem 3.27. Let I be a zero-dimensional ideal in Clzy,..., xz,], here
interpreted as a system of linear PDEs. The space of holomorphic solutions
has dimension equal to the degree of I. There exist nonzero polynomial
solutions if and only if the mazimal ideal M = (x1,...,xy,) is an associated
prime of I. In that case, the polynomial solutions are precisely the solutions
to the system of PDEs given by the M-primary component (I : (I : M)).



Calculus Homework

Given three distinct integers a, b, ¢ > 0, describe the space
of all functions ¢ = ¢(x, y, z) that satisfy the three PDE

0% 0% 0 0% 0% 9% 9% 9% 9% _
Oxa ' dya ' 9z2  Oxb T ayb T 9zb T x| dyc | 9z

For (a,b,c) =(1,2,3) get ¢ = (x—y)(x—2z)(y—z) and its derivatives.
To gain insight, start with (a, b, c) = (2,5, 8).

Due Date: Tomorrow
Submit your solution to: bernd@mis.mpg.de
No late homework, please

Many thanks for your attention!



