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MOTIVATION

N\ G
FEYNMAN INTEGRALS

The geometry

/N

Riemann sphere Calabi-Yau Riemann surface of genus g > 1

Feynman integrals related to these geometries are well studied.
Still many open questions/problems!

In String Theory: See Carlos’ & Konstantin’s posters!
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FEYNMAN INTEGRALS AND THEIR GEOMETRIES GEOMETRIES

How do we associate one (or multiple) geometries to a Feynman integral (family)?
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Find variety Picard Fuchs operator Polynomial equation

(via Baikov)

Not necessarily unique!

[ Marzucca, McLeod, Page, Pogel, Weinzierl | Jockers, Kotlewski, Kuusela, McLeod, Pogel, Sarve, Wang, Weinzierl]
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EXAMPLES FOR (HYPER-)ELLIPTIC FEYNMAN INTEGRALS GEOMETRIES

ELLIPTIC EXAMPLE: SUNRISE HYPERELLIPTIC EXAMPLE: NON-PLANAR CROSSED BOX

D=2 —2¢ P2 D—d4_ 9

maximal cut maximal cut
loop - by - loop loop - by - loop
Jdew e —m)e = p)le — o)l —pal H0 [ drfle A= X)) (@ - X)) e 0] E

[ Huang, Zhang | Georgoudis, Zhang | Marzucca, McLeod, Page, Pogel, Weinzierl |

, |

even elliptic curve of genus 1: even hyperelliptic curve of genus 2:
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FEYNMAN INTEGRALS FROM DIFFERENTIAL EQUATIONS DEQ

We want to compute a Feynman integral family analytically with differential equations.

LodPe | o
I”N,/(H m?)HDfi

1=1 1=1

B Use IBPs to find a basis of master integrals for the integral family
See talks by G. Fontana, T.Huber.

B Set up a differential equation w.r.t the external (kinematic) parameters

dI(X) = A(X,e)I(X) with d=) dX;0x, where X; are kinematic variables

® Find a canonical dlfferentlal equation & solve in terms of iterated integrals.
[Henn] : :

J(X) =U-I(X) with ZiJ (X) =eB(X)J (X)
and eB(X)=(dU)- U '+U - A(X,e) - U !

J(X) = Pexp (5L3> - J (some point X") = <1+5/B+5 WB > - J(XY)
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FEYNMAN INTEGRALS FROM DIFFERENTIAL EQUATIONS DEQ

We want to compute a Feynman integral family analytically with differential equations.
K hyperelliptic

® Find a canonical differential equation & solve in terms of iterated integrals.
[Henn]

= U - I(X) with dJ (X) B(X)J(X)—> How do we find this (systematically)? This talk!

<1+5/B+52 B/B+ > (X”) —— What are these? Ongoing work!
Y

See also Konstantin’s poster!
e Genus 0: &-form + dLog forms
e Genus 1: & -form + simple poles (+ e.g. quasi modular forms)

_ : generalization of
e Genus > 1: & -form + simple poles + ??7? - Siegel modular forms (?)
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FEYNMAN INTEGRALS IN C-FORM DEQ

Consider a (Feynman integral -) differential equagon of the form EXAMPLE-
dJ(X) = eB(X)J(X) with B(X);; = Z d X fiik B(X) in dLog-form, i.e.:
— 1
= ' fij =
- Define: / Zr: Ajjr — X
A : = K - algebra of functions that contains all fijx and: o Adqros =
m Differentially closed (f € A= 0x,f € AVi ) Rational functions in X

with singularities at the a;
m Constants = K (0x,f=0Vi= f €K)

dX .
. AdLog — <aijr — Y all ’L,j,r>

>
||

K - vector space of closed differential forms
generated by the forms appearing in B(X)

Fc i = Frac ((C R A) Elements of df¢:
e N0 pole/ pole of order > 1

or

[ Duhr, Semper, Stawinski, FP |

All known (to us) canonical DEQS for Feynman integrals are also in C-fom!
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MAXIMAL CUTS OF FEYNMAN INTEGRALS MAXIMAL CUTS

Q .

Q .
Q .
g .

Q .

The period matrix of a twisted cohomology group The fundamental solution for the homogenous
defined by the Feynman integrand after taking residues. differential equation of the top sector.

1 e ) e )
/ 1 I101 — @ — — — — - I101
DD, > 0(Dy) lo11 — — @ — — —— | | lonx

‘ dllinn| = |- — — I111
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~ | dez®|(x — T — T — T — 27 ¢ 1121 - — - I191
/F (2= ) (& — p12) (& = p1z) (& — )] o R 71/

® = twist (generally & -dependent)

P ( / qmj) DY AU W . 4P = P
b
Bases of twisted (co-)homology groups

10/33 CANONICAL DIFFERENTIAL EQUATIONS FOR HYPERELLIPTIC FEYNMAN INTEGRALS | FRANZISKA PORKERT



MAXIMAL CUTS OF FEYNMAN INTEGRALS MAXIMAL CUTS

The period matrix of a twisted cohomology group defined by the Feynman integrand after taking residues.

4
Bases of twisted (co-)homology groups

In this framework: We also have a dual twisted cohomology and homology group with bases {z0; }, {*; } and:

» 3 —1 - 1 . weighted topological
P = ([ ¢ w]) C = (2 Z)n (/ (%) /\ZDj) H :(intersectionsof%%‘ .
Vi 17 T i L)
dual period matrix cohomology intersection matrix homology intersection matrix

For maximal cuts, we can choose the bases such that P(¢) = P(—¢) and we obtain bilinear relations

between the maximal cut entries (from twisted Riemann bilinear). Connected to self-duality; See talk by S.Weinzierl!
[ Duhr, Semper, Stawinski, FP ]
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MAXIMAL CUTS IN C-FORM MAXIMAL CUTS

(/

'
Bases of twisted (co-)homology groups | |

P = ( / b wj> with AP, = p

Goal: & -form and C-form

—> Goal: Good basis of master integrals <= Good basis of the twisted cohomology group
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MAXIMAL CUTS IN C-FORM MAXIMAL CUTS

(/

'
Bases of twisted (co-)homology groups | |

P = ( / b wj> with AP, = p

Goal: & -form and C-form

—> Goal: Good basis of master integrals <= Good basis of the twisted cohomology group

Basis and dual basis are in &-form and C-form — The intersection matrix is constant
(with P(g) = P(—¢)) in the external variables, dC = 0.
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THREE KEY-POINTS TO REMEMBER

M Maximal cut: Period matrix of twisted cohomology and fundamental solution of homogenous DEQ

,{ Good basis and dual basis of differentials —> The intersection matrix is constant.

; Maximal cut also defines a geometry and the good basis is connected to this geometry.
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MAXIMAL CUTS OF
(HYPER-)ELLIPTIC FEYNMAN INTEGRALS




FINDING CANONICAL DEQs

J(X) =U-I(X) with dJ(X) = ¢B(X)J(X)—> How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry.

[ Brosel, Duhr, Dulat, Penante, Tancredi | Pogel, Wang, Weinzierl | Gorges, Nega, Tancredi, Wagner ]

Short review of the algorithm by [Gorges, Nega, Tancredi, Wagner] (applied to maximal cut):
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FINDING CANONICAL DEQs
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Short review of the algorithm by [Gorges, Nega, Tancredi, Wagner] (applied to maximal cut):

Make a good choice for the starting basis
(Inspired by simple basis of Abelian differentials; derivative basis)

16/33 CANONICAL DIFFERENTIAL EQUATIONS FOR HYPERELLIPTIC FEYNMAN INTEGRALS | FRANZISKA PORKERT



FINDING CANONICAL DEQs

J(X) =U-I(X) with dJ(X) = ¢B(X)J(X)—> How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry.

[ Brosel, Duhr, Dulat, Penante, Tancredi | Pogel, Wang, Weinzierl | Gorges, Nega, Tancredi, Wagner ]

Short review of the algorithm by [Gorges, Nega, Tancredi, Wagner] (applied to maximal cut):

Make a good choice for the starting basis
(Inspired by simple basis of Abelian differentials; derivative basis)

Compute the period matrix at € = 0 and split it in semi-simple and unipotent parts.

Rotate the initial basis with the inverse of the semi-simple part.
(Geometry inspired step)
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FINDING CANONICAL DEQs

J(X) =U-I(X) with dJ(X) = ¢B(X)J(X)—> How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry.

[ Brosel, Duhr, Dulat, Penante, Tancredi | Pogel, Wang, Weinzierl | Gorges, Nega, Tancredi, Wagner ]

Short review of the algorithm by [Gorges, Nega, Tancredi, Wagner] (applied to maximal cut):

Make a good choice for the starting basis
(Inspired by simple basis of Abelian differentials; derivative basis)

Compute the period matrix at € = 0 and split it in semi-simple and unipotent parts.

Rotate the initial basis with the inverse of the semi-simple part.
(Geometry inspired step)

Make further simple rotations (exchanges of basis elements + powers of & )

to make the remaining non-canonical part lower-triangular.
(Adjustment step)
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FINDING CANONICAL DEQs

J(X) =U-I(X) with dJ(X) = ¢B(X)J(X)—> How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry.

[ Brosel, Duhr, Dulat, Penante, Tancredi | Pogel, Wang, Weinzierl | Gorges, Nega, Tancredi, Wagner ]

Short review of the algorithm by [Gorges, Nega, Tancredi, Wagner] (applied to maximal cut):

Make a good choice for the starting basis
(Inspired by simple basis of Abelian differentials; derivative basis)

Compute the period matrix at € = 0 and split it in semi-simple and unipotent parts.

Rotate the initial basis with the inverse of the semi-simple part.
(Geometry inspired step)

Make further simple rotations (exchanges of basis elements + powers of & )

to make the remaining non-canonical part lower-triangular.
(Adjustment step)

B Make ansatz to remove these remaining non-canonical entries and

solve the resulting differential equations.
(New objects step)
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CYCLES ON HYPERELLIPTIC CURVES ANY GENUS

2g+2
Even hyperelliptic curve: y° = H (x — N\;) .
i=1

We have the following a- and b-cycles:

b1
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DIFFERENTIALS ON HYPERELLIPTIC CURVES ANY GENUS

ABELIAN DIFFERENTIALS
... OF THE FIRST KIND: — 1 ™~ ... OF THE THIRD KIND:
Holomorphic Meromorphic
... OF THE SECOND KIND: non-zero residue
dx r9~1dz M .
- eromorphic 94 d
Y Y vanishing residue L= ax L dx
T — C —
dr ¢y (z)dr  D,(x)dx vyl ) -
g=1 — .
y y y
g =2 dr adx Oy (z) =297 +
vy ®,(z) =29 +
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EXAMPLE: MAXIMAL CUT FOR THE NON-PLANAR CROSSED BOX GENUS 2

A2 = — =tage
L(\ a) :/ dz (1 — )\1_1:1:) s (1 — )\6_1:5) 2l
A

1 6 6
P | -
Twist == with @ = [ =Xty & =] \/(1 -\ @)
i=1 1=1

dx rdw P (xz)d o d r?da
S =D o= O = 1(z)de 0 _ 2(2) “dand: AU = o
Jirst kind” ,second Kind"® Jthird kind®
BASIS OF CYCLES:
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EXAMPLE: MAXIMAL CUT FOR THE NON-PLANAR CROSSED BOX GENUS 2

first
Kind

e—0

second
Kind

G 1 Y1 W2 1
enus 1. _ —
T — Wo W
M 12 2
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STEP 1: DERIVATIVE BASIS

p ) =Ug g
........................... 10 5 5 10
R I S o L L i
0 00 o0 - -0 |- =
©0 00 - o0 —-—-o —— = = =
dgp(l): o0 00 | - |—0000| & - |00 — @ 82 90(1)
000 - - 000 0 — ¢
0000 e -0, |-—---—-
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STEP 2: SEMI-SIMPLE ROTATION

I
N

0 A 0 0\/1 Q 0
- . 1 . i . - |
i, oy =Jim UG Proy = lim U (A B0 | —Jim p{ A 21 0f{0 10
kK% x kK
S
2 —1 (1
- =00 ®ee®  -o| | -—-——--—-—-
d90(2>: [:::: +[::o.: 5+[-..]52 p'?
————— 000 o 0 — o
0000 eeo® -0 | —-——-—-—-—-
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EXAMPLE STEP 3: ADJUSTEMENTS

2
Remove £ -terms:

r oo o0oon -~ o000 o

OIS S PO RO [.f.]+[:::::]g+ogz e
0 0 0 L o0 e O 0000
0 0 0 6 1 o0 — — — 0000

Lower triangular 80 - terms:

$rPr oo oon e 0000
o1 o ooy N |l====- 0000

A R Kl Gl | FFP +[::::: | et
00 1 0 0 eee - cecee
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EXAMPLE STEP 4. ANSATZ

d90(4): - + ::::: c g0(4)

/ |
A

We want to remove these entries!
Find final transformation:

1. Make an ansatz:

de® = UL oW with U =|** —

unknowns

—1 -
2. Transform the differential equation: dept®) = (dUé5)> (Ué5)) — Ué5)A (Ué5)) o)

3. Require that the 80- entries vanish 8 coupled differential equations of 8 unknowns %
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EXAMPLE STEP 4. ANSATZ GENUS 2

3. Require that the 50- entries vanish 8 coupled differential equations of 8 unknowns %

e Non-trivial to solve !

e Undetermined (at most 8) number of new functions !
(not expressible just in periods and branch points)

|

Can we Simyﬁ@ this?
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EXAMPLE STEP 4. ANSATZ GENUS 2

3. Require that the 50- entries vanish 8 coupled differential equations of 8 unknowns %

'
We can simplify this, using the intersection matrix!

Basis and dual basis are in &-form and C-form — The Iintersection matrix is constant
(with P(e) = P(—¢)) in the external variables, dC = 0.

[ Duhr, Semper, Stawinski, FP ]

Use this condition constructively:

~

1. Choose basis 90(5> & dual basis 90( ,)so that P(e) = P(—¢) .
2. Compute intersection matrix (' [ Contains the 8 unknowns Y of Ué5)]

3. Require all entries of C' to be constant in parameters )\, and solve for (some) % .
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EXAMPLE STEP 4. ANSATZ

3. Require that the 50- entries vanish 8 coupled differential equations of 8 unknowns %

Basis and dual basis are in £-form and C-form — The intersection matrix is constant
(with P(¢) = P(—¢)) in the external variables, dC = 0.

[ Duhr, Semper, Stawiniski, FP ]

Use this condition constructively:

U(5) e e___| —, Allbutthree entries of the final transformation
6 = | xe x— — (expressed in periods, branch points & the three remaining new functions)

Find from (now) simpler
differential equations

— A constant skew-diagonal intersection
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RESULT GENUS 2

(5) _ U(5) (4) (3) U(Q) (1) S0_>In|t|al basis

(inspired by geometry)

Ansatz for final rotation 4) ) k \ Derivative basis

(Use intersection matrix)

Reordering Rotation with the inverse of the

semi-simple part of the period matrix
g - factors PIe P P

dgp(5) —cB()) 90(5) in £-form and C-form

k* forms to be classified (Siegel (quasi-)modular?)

Preliminary results:
For the Lauricella function with 5 branch points (odd hyperelliptic curve of genus 2), we obtain
Siegel modular forms.
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SUMMARY: THREE TAKEAWAYS

‘ The algorithm by [Gérges,Nega,Tancredi,Wagner] also works for hyperelliptic maximal cuts!

Differential equation for maximal cut in £-form and C-form —> constant intersection matrix!
Can be used constructively!

/f Preliminary evidence for Siegel modular forms (+ generalisations) in Feynman integrals

OUTLOOK

e Better understanding of the appearing (Siegel modular?) forms
e Numerical evaluation of hyperelliptic Feynman integrals

e Compute the full non-planar double box (beyond the maximal cut)

e Better understanding of the role of the C-form (more generally)




THANK




Quasi - modular forms BACKUP

Under a modular transformation, the periods and punctures transform in the following way:

Z aT + b
Z T > i

ct+d ct + d

1 = (em +d)yYr , Y2 — (aT + b)Y

Oo1 — (T + d)0ih1 + cp1 00T

A gquasi-modular form of weight k and depth p transforms in the following way:

p (
d) k+2 Ce 7;
) = ;:0 cT + (CHd filz,7)
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Siegel modular forms BACKUP

Symplectic group of level p:
[SY2P (p) = v € Glog(Z) |y o v = oo and v =1 mod p
J 1 0 1 O

The normalized period matrix transforms as:

voQd=(A-Q+B)(C-Q+ D) " for v = (é IB)>

A B sym
g(vyo Q) :det(C-Q+D)kg(Q) for all v = (C D) c I[P (p)

CANONICAL DIFFERENTIAL EQUATIONS FOR HYPERELLIPTIC FEYNMAN INTEGRALS | FRANZISKA PORKERT



Independent differentials on hyperelliptic curve BACKUP

2g+2
We are interested in integrals over rational functions R(x,y)with y* = H (x — N\;) .

1=1

/dmR(x,y) :/dﬁRl(x)+/dez(x)

Y

Partial fractioning / \

k
/dmm— anc /da: L MPLs:/dx :
Y y(x — ¢ T —C

Integration by parts l

" 1
/dx—withk:O,...,Zgand/dx for ¢ # A\
Yy

CANONICAL DIFFERENTIAL EQUATIONS FOR HYPERELLIPTIC FEYNMAN INTEGRALS | FRANZISKA PORKERT



ELLIPTIC EXAMPLE: SUNRISE
D =2-—2¢

maximal cut
loop - by - loop

FEYNMAN INTEGRAL WITH AN ELLIPTIC CURVE

GENUS 1

Homology basis: e :

a1 b1
dxr xdx
Basis of differentials: y 7 y

Periods and quasi-periods:

d xdx
a1

a Y 7 r= 22
dr B / r dx (W1
b1 y bl y
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EXAMPLE: ELLIPTIC LAURICELLA GENUS 1

A toy model for Feynman integral with even elliptic curve of genus 1:

'LL | 4+ a _Ia
Lalpea) = [ (1= p ) (1 ) T (1) T (1) T
3

_ U
Twist: @4 = ?4 with v° = (1—p7'2) (1 —py'w) (1 —pz'z) (1— py ' x)

We use the algorithm by [Gorges, Nega, Tancredi, Wagner ]:

1._Make a good choice for the starting basis

o ](O) /\Ij d_fL‘
7(0)

e ) — o) < (B2 [ A

(0)
1 IS 3
Y
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EXAMPLE: ELLIPTIC LAURICELLA

2. Rotation with semi-simple part of the period matrix at £ = 0 :

1 0 Iy ol (1)
Wi W2 Wi I 7 1
p () (@ L)) () 2[5 [
0 1 2 . Y 2
m Uy, \/X |771 I w1 | Izgl) 0 0O 1 IéO)
g .

(1) ](1)
L =0 - -0 il B %1)
— d 12() — =—- |+ |00 | & - |®@— 0] & IQ
(1) oo o - o — — — (1)
I3 I

3. Reordering and £ Rotation:

P\ (e 0 oy (1 B\ reesy \ (1
]2(2) — 10 0O 1 12(1) — d ]2(2) — ( [0 @ —] + [o @ 0] 5) 12(2>
]?()2) 0 ¢ 0 ]?()1) I;§2) ooeo ooeo ]:gg)

/’

= Make an Ansatz for the final transformation, require €-form and solve the resulting differential equations.
» One new object (not rational function of periods & branch points).

4. Integrate out remaining entries
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