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Review: ε-factorised differential equation

Notation:

I = (I1, ..., INF ) , set of master integrals,

x = (x1, ...,xNB) , set of kinematic variables the master integrals depend on.

ε-factorised differential equation: (Henn ’13)

dI (ε,x) = εA(x) I (ε,x)

Conjecture: A change of the basis of master integrals to an ε-factorised
differential equation always exists.

The ε-factorised form is preserved under constant (i.e. x-independent)
GL(NF ,C)-rotations.
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Review: Transformation to an ε-factorised form

The transformation from a pre-canonical form to an ε-factorised form may
involve

rational functions

algebraic functions (square roots)

periods of elliptic curves

periods of Calabi-Yau manifolds

...

Beyond rational functions, there is typically a choice involved (the sign of a
square root, basis vector in a lattice, etc.).

Stefan Weinzierl (Uni Mainz) Relations in the differential equation October 15, 2024 4 / 29



Review: Sectors with more than one master integral

Starting from two-loops there can be sectors with more than one master
integral.

The differential equation relates in general a sector to itself and to
sub-sectors, obtained by pinching.
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Review: Block-triangular structure of the matrix A

Order the set of master integrals I⃗ = (I1, . . . , INF )
T such that I1 is the simplest

integral and INF the most complicated integral.

The matrix A has a lower block-triangular structure:

A =


D1 0 0 0

0
N21 D2 0
N31 N32 D3



Diagonal blocks: D1, D2, D3

Non-diagonal blocks: N21, N31, N32
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Outline

Question: Given an ε-factorised differential equation, is there a constant
rotation, preserving the block-triangular structure, such that (some)
entries of A are related by a symmetry?
Answer: There is evidence, that sectors with two or more master integrals
have extra symmetries:

Self-duality
Galois symmetries

In practice: Assuming these additional symmetries is very helpful in
finding an ε-factorised differential equation.

Pögel, Wang, S.W., Wu, Xu, ’24
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Section 1

Self-duality
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Self-duality

Let us consider a diagonal block (i.e. a maximal cut)

D =


d11 d12 . . . d1(n−1) d1n

d21 d22 . . . d2(n−1) d2n
...

...
...

...
d(n−1)1 d(n−1)2 . . . d(n−1)(n−1) d(n−1)n

dn1 dn2 . . . dn(n−1) dnn

 .

Self-duality is the statement that there is a basis such that

dij = d(n+1−j)(n+1−i),

i.e. D is symmetric with respect to the anti-diagonal.
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Self-duality

Self-duality first observed on the maximal cut of the equal-mass l-loop
banana integrals

Provides algebraic equations (as opposed to differential equations) to
construct an ε-factorised form.

Evidence that self-duality is not restricted to Calabi-Yau Feynman
integrals, but holds more generally.

Self-duality is a property of the maximal cut.
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Essentially self-adjoint operators

Consider a differential operator L in one variable y .
The adjoint operator L∗ of an operator L is defined to be

L =
l

∑
j=0

rj (y)
d j

dy j ⇒ L∗ =
l

∑
j=0

(−1)l−j d j

dy j rj (y)

An operator L is called self-adjoint, if L∗ = L.
An operator L is called essentially self-adjoint or self-dual, if there
exists a function α(y) such that

αL∗ = Lα.

Fact
The Picard-Fuchs operator for the l-loop equal-mass banana integral in D = 2
space-time dimensions is self-dual.
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Self-duality and twisted cohomology

Feynman integrals can be viewed as a pairing between twisted cocyles
(the integrand) and cycles (the integration domain).

For a sector with n master integrals: There are n independent cycles.

We may define a n×n period matrix.

To any twisted cocyle we may define its dual, similar for the cycles.

This defines the dual period matrix.

Self-duality is a relation between the period matrix and the dual period
matrix.

If n is even and n ≥ 4 it is not excluded that

D =

(
0 1

−1 0

)
DT

(
0 1

−1 0

)
Duhr, Porkert, Semper, Stawinski, ’24
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Examples of self-duality with sectors of four master integrals

Equal-mass four-loop banana

Higgs self-enery: Three-loop
banana with mass configuration
(0,0,m1,m2).

Drell-Yan double-box integral
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Section 2

Galois symmetries
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Galois theory

Definition
Given a non-constant polynomial p(x) with coefficients from a field F , the roots of p(x) may not
lie in F . The splitting field L/F is the smallest field extension that contains all the roots of p(x).
The Galois group

G (L/F) = { σ ∈ Aut(L) | σ|F = id }

is the subgroup of the automorphism group of L, which keeps F fixed.

Example

The roots of x2 −3 ∈Q[x] lie in Q[
√

3] and the Galois group is

G
(
Q[

√
3]/Q

)
= Z2,

generated by

σ : Q[
√

3]→Q[
√

3],

σ

(√
3
)

= −
√

3.
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Galois theory

In the application towards Feynman integrals we often encounter roots r
of quadratic equations, where the Galois group acts as r →−r . A typical
example is the square root

r =
√

−s (4m2 − s).

Typical Galois groups are products of Z2.

Nested roots: Two-loop calculation for pp → t t̄H.
Febres Cordero, Figueiredo, Kraus, Page, Reina, ’23
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Galois theory

We are interested in Galois symmetries in addition to self-duality.

If σ is an element of the Galois group, we ask if in addition to self duality
we may choose master integrals such that for example

J2 = σ(J1) ,

Galois symmetries provide relations beyond the maximal cut.
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A simple example

For a sector with two master integrals it is often possible to find a basis
J = (J1,J2)

T such that

dJ = εAJ, J2 = σ(J1) ,

and A has the structure

A =

(
a11 a12

a21 a22

)
,

where entries with the same background colour are related by a symmetry.
We have the relations

a11 = a22, a11 = σ(a11) , a12 = σ(a21) .
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A sector with three master integrals

A sector with three master integrals I = (I1, I2, I3)T and a Galois symmetry,
which relates I1 and I3

I3 = σ(I1)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

  a11 a12 a13

a21 a22 a23

a31 a32 a33

  a11 a12 a13

a21 a22 a23

a31 a32 a33


self-duality Galois both
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An example with subsectors

A system with two sectors with two master integrals each and Galois group
Z2 ×Z2.

I2 = σ(I1) and I4 = σ
′ (I3) .

A =


a11 a12 0 0
a21 a22 0 0
a31 a32 a33 a34

a41 a42 a43 a44

 .
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A realistic example

A system with 16 master integrals (related to Drell-Yan):

A = 

a11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 a22 a23 0 0 0 0 0 0 0 0 0 0 0 0 0
0 a32 a33 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 a44 0 0 0 0 0 0 0 0 0 0 0 0

a51 a52 a53 0 a55 0 0 0 0 0 0 0 0 0 0 0
a61 0 0 a64 0 a66 0 0 0 0 0 0 0 0 0 0
a71 0 0 0 0 0 a77 a78 0 0 0 0 0 0 0 0
a81 0 0 0 0 0 a87 a88 0 0 0 0 0 0 0 0
0 0 0 0 a95 0 0 0 a99 0 0 0 0 0 0 0
0 0 0 0 0 aA6 0 0 0 aAA 0 0 0 0 0 0

aB1 aB2 aB3 0 aB5 0 aB7 aB8 0 0 aBB 0 0 0 0 0
aC1 0 aC3 aC4 0 aC6 0 0 0 0 0 aCC aCD 0 0 0
aD1 aD2 0 aD4 0 aD6 0 0 0 0 0 aDC aDD 0 0 0
aE1 0 0 aE4 0 aE6 aE7 aE8 0 0 0 0 0 aEE aEF 0
aF1 0 0 aF4 0 aF6 aF7 aF8 0 0 0 0 0 aFE aFF 0
a01 a02 a03 0 a05 a06 a07 a08 a09 a0A a0B a0C a0D a0E a0F a00


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Section 3

Details
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Constant square roots

The requirement of self-duality may introduce
constant square roots like

√
3.

This in turn may lead to a Galois symmetry√
3 →−

√
3.

Two-loop sunrise integral with mass
configuration (0,0,m): Two master integrals,
no sub-sectors, no kinematic square root.
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Non-uniqueness

An example with a sector with two master
integrals and two kinematic square roots:

r1 =
√

−t
(
4m2

1 − t
)
, r3 =

√
−m2

2

(
4m2

1 −m2
2

)
.

Standard integrals for an ε-factorised form are

I5 = ε
3r1I011012000,

I6 = ε
2r3 D−I011(−1)11000.

For self-duality and Galois symmetry we may
either choose

J5 = I5 +
i
6

√
3I6, J6 = I5 −

i
6

√
3I6,

or

J ′5 = I6 −2i
√

3I5, J ′6 = I6 +2i
√

3I5.
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Parameterised Galois symmetries

It might occur that the transformation

J1 = I1 + rI2, r =
√

λ,

J2 = I1 − rI2,

realises self-duality and Galois symmetry for
any value λ ∈Q that is not a perfect square.

Example: Pentabox
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Limit Galois symmetries

We first divide the rational numbers Q into perfects
squares PS and not perfect squares NPS.

Consider sequences (λn) ∈ NPS with

lim
n→∞

λn = λ ∈ PS.

For each such sequence redefine the master
integrals for example as as

J(n)
1 = I1 +

√
λnI2, J(n)

2 = I1 −
√

λnI2.

Set

J1 = lim
n→∞

J(n)
1 = I1 +

√
λI2, J2 = lim

n→∞
J(n)

2 = I1 −
√

λI2.
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Section 4

Remarks
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Always walk on the physics side of life

No rigorous proof in this talk.

Recall: Assuming self-dualtiy and Galois symmetries is very helpful in
finding an ε-factorised differential equation, i.e. a change of the basis of
master integrals I′ = UI.

Suppose we have an educated guess for U(ε,x). It is easy to check, if
this transformation factors out ε: Simply compute

A′ = UAU−1 +UdU−1.

Compare to the following situation: Suppose N is the product of two
prime numbers. It is simple to check if p is a factor of N, this requires only
one division.

No mathematical rigour required for our educated guess (... still it would
be nice to have a proof...).
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Conclusions

We certainly would like to choose our master integrals such that they
satisfy an ε-factorised differential equation.

I presented evidence, that in addition we may choose the master integrals
such that we realise self-duality and Galois symmetries.

Assuming these additional symmetries is very helpful in finding an
ε-factorised differential equation.
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