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Outline

▶ What and why

▶ A mathematically nice (and large) triangulation

▶ Smaller triangulations and secondary polytopes



What is a cosmological polytope?

Let G = (V , E ) be a graph without isolated vertices.

The cosmological polytope CG ⊆ RV ∪E of G is

CG := conv{ ef + ei − ej ,

ef − ei + ej ,

−ef + ei + ej : f = {i , j} ∈ E} ⊆ RV ∪E .
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What is a cosmological polytope?

Let G = (V , E ) be a graph without isolated vertices.

The cosmological polytope CG ⊆ RV ∪E of G is

CG := conv{ ef + ei − ej ,

ef − ei + ej ,

−ef + ei + ej : f = {i , j} ∈ E} ⊆ RV ∪E .

Observation
▶ ef ∈ CG and ei ∈ CG for all f ∈ E and i ∈ V .

▶ dim CG = |V |+ |E | − 1.



Why should you care?

The contribution of a graph G = (V , E ) to the cosmological wavefunction is given by the flat
space wavefunction of G .

The latter is equal to the canonical form ΩCG of CG , where

ΩCG = g
f1 · · · fr

ω,

with
▶ ω regular differential form on CG ,

▶ fi linear forms defining facets,

▶ g is a polynomial vanishing on intersections of facets outside of CG .

Alternatively, one can compute ΩCG from a subdivison of CG into polytopes Q1, . . . , Qm since

ΩCG = ΩQ1 + · · ·+ ΩQm .



Why should you care?

The contribution of a graph G = (V , E ) to the cosmological wavefunction is given by the flat
space wavefunction of G . The latter is equal to the canonical form ΩCG of CG , where

ΩCG = g
f1 · · · fr

ω,

with
▶ ω regular differential form on CG ,

▶ fi linear forms defining facets,

▶ g is a polynomial vanishing on intersections of facets outside of CG .

Alternatively, one can compute ΩCG from a subdivison of CG into polytopes Q1, . . . , Qm since

ΩCG = ΩQ1 + · · ·+ ΩQm .



Why should you care?

The contribution of a graph G = (V , E ) to the cosmological wavefunction is given by the flat
space wavefunction of G . The latter is equal to the canonical form ΩCG of CG , where

ΩCG = g
f1 · · · fr

ω,

with
▶ ω regular differential form on CG ,

▶ fi linear forms defining facets,

▶ g is a polynomial vanishing on intersections of facets outside of CG .

Alternatively, one can compute ΩCG from a subdivison of CG into polytopes Q1, . . . , Qm since

ΩCG = ΩQ1 + · · ·+ ΩQm .



Questions from physicists and mathematicians
▶ What nice subdivisions do these polytopes have?

▶ What nice properties do these polytopes have?

▶ What is the physical meaning?

What is known
▶ facet descriptions (Arkani-Hamed-Benincasa-Postnikov; 2017)

▶ face descriptions (Benincasa, Kühne-Monin; 2022)

▶ the normalized volume for trees (Kühne-Monin; 2022)
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The toric ideal

Let G = (V , E ) be a graph.

RG = K[zk , ze , yij , yji , te : k ∈ V , e = {i , j} ∈ E ]

φG : RG → K [xp : p ∈ CG ∩ ZV ∪E ]
zk 7→ xk

ze 7→ xe

yij 7→ xix−1
j xe

yji 7→ x−1
i xjxe

te 7→ xixjx−1
e

ICG = ker(φG) is called the toric ideal of CG .
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Example
1 2

ICG = ⟨y12y21 − z2
e , y12te − z2

1 , y21te − z2
2 , y12z2 − z1ze , y21z1 − z2ze , teze − z1z2⟩

Order the variables in RG

y12 > y21 > te > ze > z1 > z2

and consider the lexicographic order on monomials, i.e.,

yb12
12 yb21

21 tbe
e zbzee zb1

1 zb2
2 ≺ ya12

12 ya21
21 tae

e zazee za1
1 za2

2 ⇔ The leftmost nonzero entry in a− b is positive.

The leading terms are the underlined terms above. Is this all?
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ICG = ⟨y12y21 − z2
e , y12te − z2

1 , y21te − z2
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Order the variables in RG

y12 > y21 > te > ze > z1 > z2

and consider the lexicographic order on monomials, i.e.,

yb12
12 yb21

21 tbe
e zbzee zb1

1 zb2
2 ≺ ya12

12 ya21
21 tae

e zazee za1
1 za2

2 ⇔ The leftmost nonzero entry in a− b is positive.

The leading terms are the underlined terms above. Is this all?
No: For

1
2

3

z1y32z12 − z3y12z32 ∈ ICG

is not divisible by any of the above leading terms.



A Gröbner basis

Theorem (J., Solus, Venturello; 2023)
The following binomials are a squarefree Gröbner basis BG of ICG :
▶ fundamental binomials for all e ∈ E,

▶ cycle binomials for all directed cycles,

▶ zig-zag pair resp. cyclic pair binomials for any path resp. cycle.

i1 i2 i3 i4

j1 j2 j3 j4

i1 i2 i3

j1 j2 j3

i0



From Gröbner bases to triangulations

Corollary (J., Solus, Venturello; 2023)
Let G be a graph. The cosmological polytope CG has a regular unimodular triangulation TG .

Facets of TG ←→ m ∈ RG not divisible by any leading term of BG

zk , k ∈ V ⇔ ek ⇔
zf , f ∈ E ⇔ ef ⇔

yij , f = {i , j} ∈ E ⇔ ei − ej + ef ⇔
yji , f = {i , j} ∈ E ⇔ ej − ei + ef ⇔
tf , f = {i , j} ∈ E ⇔ ei + ej − ef ⇔

The monomial z1z3z12y12t23 corresponds to

1
2

3
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Example
▶ For I2 the facets are

▶ For I3 the facets are



Normalized volumes

Theorem (J., Solus, Venturello; 2023)
The normalized volume of the cosmological polytope of
▶ the path In on n vertices equals 4n−1.

▶ any tree on n vertices equals 4n−1.

▶ the n-cycle equals 4n − 2n

What else?
We can compute the h∗-polynomials for
▶ trees (with multiple edges)

▶ cycles (with multiple edges)

▶ 1-sums of graphs.
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A little tale

Three weeks ago, I gave a similar talk at a workshop in Leipzig and the same day Daniel
Baumann gave a talk in the UNIVERSE+ seminar.

Daniel showed the following graph tubings that can be used to compute differential equations
satisfied by the cosmological wavefunction.

F f g
F̃ q1 g̃

Q1 q2 Z
Q2 q3

Q3 q̃1

q̃2

q̃3

Bernd Sturmfels was attending both talks and asked if there is a relation.
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Towards an answer

There is no canonical bijection between the graph tubings and the facets of our triangulation
for I3 due to lack of symmetry in the triangulation.

But: This is not the only unimodular triangulation.
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Question
Is there a canonical bijection between facets of this triangulation and tubings?
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A bijection

complete tubing facet complete tubing facet



Observations

▶ For I3 there are 316 regular triangulations, 45 are unimodular, 1 is symmetric.

▶ The dual graph of the symmetric triangulation is a 4× 4-grid.

▶ For I4 there are 22081 regular triangulations, 2122 are unimodular, 48 are symmetric.

▶ There is 1 symmetric triangulations for I4 whose dual graph is a 4× 4× 4-grid.

▶ The 16 tubings can be refined into groups of 1, 5, 7 and 3 tubings:

1− 5 + 7− 3 = 0.

▶ (1, 5, 7, 3) is the f -vector of a 3-fold cone over an edge.

▶ For I4 the 64 tubings can be refined as 64 = 1 + 8 + 22 + 24 + 9:

1− 8 + 22− 24 + 9 = 0.

▶ (1, 8, 22, 24, 9) is the f -vector of a 3-fold cone over the previous complex.



Observations

▶ For I3 there are 316 regular triangulations, 45 are unimodular, 1 is symmetric.

▶ The dual graph of the symmetric triangulation is a 4× 4-grid.

▶ For I4 there are 22081 regular triangulations, 2122 are unimodular, 48 are symmetric.

▶ There is 1 symmetric triangulations for I4 whose dual graph is a 4× 4× 4-grid.

▶ The 16 tubings can be refined into groups of 1, 5, 7 and 3 tubings:

1− 5 + 7− 3 = 0.

▶ (1, 5, 7, 3) is the f -vector of a 3-fold cone over an edge.

▶ For I4 the 64 tubings can be refined as 64 = 1 + 8 + 22 + 24 + 9:

1− 8 + 22− 24 + 9 = 0.

▶ (1, 8, 22, 24, 9) is the f -vector of a 3-fold cone over the previous complex.



Observations

▶ For I3 there are 316 regular triangulations, 45 are unimodular, 1 is symmetric.

▶ The dual graph of the symmetric triangulation is a 4× 4-grid.

▶ For I4 there are 22081 regular triangulations, 2122 are unimodular, 48 are symmetric.

▶ There is 1 symmetric triangulations for I4 whose dual graph is a 4× 4× 4-grid.

▶ The 16 tubings can be refined into groups of 1, 5, 7 and 3 tubings:

1− 5 + 7− 3 = 0.

▶ (1, 5, 7, 3) is the f -vector of a 3-fold cone over an edge.

▶ For I4 the 64 tubings can be refined as 64 = 1 + 8 + 22 + 24 + 9:

1− 8 + 22− 24 + 9 = 0.

▶ (1, 8, 22, 24, 9) is the f -vector of a 3-fold cone over the previous complex.



Observations

▶ For I3 there are 316 regular triangulations, 45 are unimodular, 1 is symmetric.

▶ The dual graph of the symmetric triangulation is a 4× 4-grid.

▶ For I4 there are 22081 regular triangulations, 2122 are unimodular, 48 are symmetric.

▶ There is 1 symmetric triangulations for I4 whose dual graph is a 4× 4× 4-grid.

▶ The 16 tubings can be refined into groups of 1, 5, 7 and 3 tubings:

1− 5 + 7− 3 = 0.

▶ (1, 5, 7, 3) is the f -vector of a 3-fold cone over an edge.

▶ For I4 the 64 tubings can be refined as 64 = 1 + 8 + 22 + 24 + 9:

1− 8 + 22− 24 + 9 = 0.

▶ (1, 8, 22, 24, 9) is the f -vector of a 3-fold cone over the previous complex.



Observations

▶ For I3 there are 316 regular triangulations, 45 are unimodular, 1 is symmetric.

▶ The dual graph of the symmetric triangulation is a 4× 4-grid.

▶ For I4 there are 22081 regular triangulations, 2122 are unimodular, 48 are symmetric.

▶ There is 1 symmetric triangulations for I4 whose dual graph is a 4× 4× 4-grid.

▶ The 16 tubings can be refined into groups of 1, 5, 7 and 3 tubings:

1− 5 + 7− 3 = 0.

▶ (1, 5, 7, 3) is the f -vector of a 3-fold cone over an edge.

▶ For I4 the 64 tubings can be refined as 64 = 1 + 8 + 22 + 24 + 9:

1− 8 + 22− 24 + 9 = 0.

▶ (1, 8, 22, 24, 9) is the f -vector of a 3-fold cone over the previous complex.



Observations

▶ For I3 there are 316 regular triangulations, 45 are unimodular, 1 is symmetric.

▶ The dual graph of the symmetric triangulation is a 4× 4-grid.

▶ For I4 there are 22081 regular triangulations, 2122 are unimodular, 48 are symmetric.

▶ There is 1 symmetric triangulations for I4 whose dual graph is a 4× 4× 4-grid.

▶ The 16 tubings can be refined into groups of 1, 5, 7 and 3 tubings:

1− 5 + 7− 3 = 0.

▶ (1, 5, 7, 3) is the f -vector of a 3-fold cone over an edge.

▶ For I4 the 64 tubings can be refined as 64 = 1 + 8 + 22 + 24 + 9:

1− 8 + 22− 24 + 9 = 0.

▶ (1, 8, 22, 24, 9) is the f -vector of a 3-fold cone over the previous complex.



Observations

▶ For I3 there are 316 regular triangulations, 45 are unimodular, 1 is symmetric.

▶ The dual graph of the symmetric triangulation is a 4× 4-grid.

▶ For I4 there are 22081 regular triangulations, 2122 are unimodular, 48 are symmetric.

▶ There is 1 symmetric triangulations for I4 whose dual graph is a 4× 4× 4-grid.

▶ The 16 tubings can be refined into groups of 1, 5, 7 and 3 tubings:

1− 5 + 7− 3 = 0.

▶ (1, 5, 7, 3) is the f -vector of a 3-fold cone over an edge.

▶ For I4 the 64 tubings can be refined as 64 = 1 + 8 + 22 + 24 + 9:

1− 8 + 22− 24 + 9 = 0.

▶ (1, 8, 22, 24, 9) is the f -vector of a 3-fold cone over the previous complex.



Observations

▶ For I3 there are 316 regular triangulations, 45 are unimodular, 1 is symmetric.

▶ The dual graph of the symmetric triangulation is a 4× 4-grid.

▶ For I4 there are 22081 regular triangulations, 2122 are unimodular, 48 are symmetric.

▶ There is 1 symmetric triangulations for I4 whose dual graph is a 4× 4× 4-grid.

▶ The 16 tubings can be refined into groups of 1, 5, 7 and 3 tubings:

1− 5 + 7− 3 = 0.

▶ (1, 5, 7, 3) is the f -vector of a 3-fold cone over an edge.

▶ For I4 the 64 tubings can be refined as 64 = 1 + 8 + 22 + 24 + 9:

1− 8 + 22− 24 + 9 = 0.

▶ (1, 8, 22, 24, 9) is the f -vector of a 3-fold cone over the previous complex.



Observations

▶ For I3 there are 316 regular triangulations, 45 are unimodular, 1 is symmetric.

▶ The dual graph of the symmetric triangulation is a 4× 4-grid.

▶ For I4 there are 22081 regular triangulations, 2122 are unimodular, 48 are symmetric.

▶ There is 1 symmetric triangulations for I4 whose dual graph is a 4× 4× 4-grid.

▶ The 16 tubings can be refined into groups of 1, 5, 7 and 3 tubings:

1− 5 + 7− 3 = 0.

▶ (1, 5, 7, 3) is the f -vector of a 3-fold cone over an edge.

▶ For I4 the 64 tubings can be refined as 64 = 1 + 8 + 22 + 24 + 9:

1− 8 + 22− 24 + 9 = 0.

▶ (1, 8, 22, 24, 9) is the f -vector of a 3-fold cone over the previous complex.



Would everybody call the used triangulations nice?

One might say yes due to
▶ the (explicit) combinatorial description,

▶ their usefulness for computing normalized volumes,

▶ their usefulness for computing h∗-polynomials,

▶ the possible connection to tubings.

One might say no for the following reasons:
▶ the (non-symmetric) triangulation does not extend nicely from subgraphs,

▶ it is too big (recall: ΩCG = ΩQ1 + · · ·+ ΩQm).

Question
Can we find a smaller and easy to compute triangulation that extends nicely?
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Towards a smaller triangulation

Let G = (V , E ), f = {v , w} with v ∈ V and w /∈ V .

G v wf

CG+f = conv{CG , ef + ev − ew , ef − ev + ew , ef + ev + ew}.

Geometrically, CG+f is obtained from CG by

▶ first taking a bipyramid over CG with apices ef + ev − ew and −ef + ev + ew , and

▶ then taking a pyramid with apex ef − ev + ew .
Hence, given a triangulation TG of CG there exists a triangulation TG+f of CG+f with

|TG+f | = 2|TG |.
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A small triangulation for trees

Observation
Let Tn be a tree on n edges. There exists a triangulation TTn of CTn with

2n−1

maximal cells.

▶ The constructed triangulation is extremely easy to describe.

▶ It extends in a simple way from smaller to larger trees.

▶ It is by far smaller than the unimodular one: 2n−1 vs. 4n maximal cells.
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Secondary polytopes

Vertices of the secondary polytope correspond to regular triangulations using only vertices.

Computing the secondary polytope of CIn for small n, we get the following results

n dim CIn # vertices of CIn dim secondary polytope # vertices of secondary polytope
3 4 6 1 2
4 6 9 2 5
5 8 12 3 14

The secondary polytopes are associahedra.
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Associahedra for n ∈ {4, 5}
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Figure: Pictures from Arkani-Hamed et al., Differential Equations for Cosmological Correlators



TODO list

▶ Compute the canonical forms via triangulations.

▶ Can the canonical form in some way read off from a Gröbner basis?

▶ Understand the connections to tubings.

▶ Understand the secondary polytopes. Is there a connection to the work of
Arkani-Hamed et al.?

▶ What is the role of the scattering amplitude facet?

▶ Find global bound for the coefficients of the h∗-polynomial.

Thank you!
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