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Discrete wave equation

In 1920’s K. Friedrichs and H. Lewy were studying discretized wave
equation in 2D

(∆k∆ℓ + ∆k∆m + ∆ℓ∆m)ak,ℓ,m = 0, ∆jaj := aj − aj−1.

They observed that Taylor coefficients ak,ℓ,m of the function

1

(1 − x)(1 − y) + (1 − x)(1 − z) + (1 − y)(1 − z)
=

∑
k,ℓ,m≥0

ak,ℓ,m xky ℓzm
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Discrete wave equation

In 1920’s K. Friedrichs and H. Lewy were studying discretized wave
equation in 2D

(∗) (∆k∆ℓ + ∆k∆m + ∆ℓ∆m)ak,ℓ,m = 0, ∆jaj := aj − aj−1.

They observed that Taylor coefficients ak,ℓ,m of the function

1

(1 − x)(1 − y) + (1 − x)(1 − z) + (1 − y)(1 − z)
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satisfy the difference equation (∗).



Discrete wave equation

1

(1 − x)(1 − y) + (1 − x)(1 − z) + (1 − y)(1 − z)
=

∑
k,ℓ,m≥0

ak,ℓ,m xky ℓzm

Friedrichs and Lewy computed several coefficients ak,ℓ,m and

these turned
out to be positive (ak,ℓ,m > 0).

They wanted to exploit positivity of ak,ℓ,m for proving convergence of this
(discrete) solution to a (continuous) solution a of the wave equation
(written in different coordinates)

(∂x∂y + ∂x∂z + ∂y∂z) a = 0.

In 1930 Lewy wrote to G. Szegö asking him to prove positivity
of Taylor coefficients (ak,ℓ,m > 0) in general.



Discrete wave equation

1

(1 − x)(1 − y) + (1 − x)(1 − z) + (1 − y)(1 − z)
=

∑
k,ℓ,m≥0

ak,ℓ,m xky ℓzm

Friedrichs and Lewy computed several coefficients ak,ℓ,m and these turned
out to be positive (ak,ℓ,m > 0).

They wanted to exploit positivity of ak,ℓ,m for proving convergence of this
(discrete) solution to a (continuous) solution a of the wave equation
(written in different coordinates)

(∂x∂y + ∂x∂z + ∂y∂z) a = 0.
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Szegö’s solution

Szegö, 1932:

for any n the Taylor coefficients ak1,...,kn of

1∑n
i=1

∏
j ̸=i (1 − xi )

=
∑

k1,...,kn≥0

ak1,...,kn x
k1
1 . . . xknn .

are positive. ⇝ Positive answer to Lewy’s question (n = 3).

More generally, Szegö proved that for any α ≥ 1/2 the function

1[∑n
i=1

∏
j ̸=i (1 − xi )

]α =
∑

k1,...,kn≥0

a
(α)
k1,...,kn

xk11 . . . xknn

has nonnegative Taylor coefficients a
(α)
k1,...,kn

≥ 0.

He expressed coefficients as some integrals of products of Bessel
functions which are shown to be positive (nonnegative).
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Szegö’s solution
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More generally, Szegö proved that for any α ≥ 1/2 the function

1[∑n
i=1

∏
j ̸=i (1 − xi )

]α =
∑

k1,...,kn≥0

a
(α)
k1,...,kn

xk11 . . . xknn

has nonnegative Taylor coefficients a
(α)
k1,...,kn

≥ 0.

He expressed coefficients as some integrals of products of Bessel
functions which are shown to be positive (nonnegative).
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A new insight from Scott and Sokal

The spanning-tree polynomial of a connected graph G = (E ,V ) is

TG (x) =
∑
T

∏
e∈T

xe , x ∈ RE ,

where the sum is over spanning (containing all vertices) trees of G .

Theorem (Scott and Sokal, 2014)

Let G = (V ,E ) be a series-parallel graph. Then for any α ≥ 1/2
and any positive vector x ∈ RE

>0, the function

y 7→ TG (x− y)−α

has nonnegative Taylor coefficients.

If G is the n-cycle, TG (x) =
∑n

i=1

∏
j ̸=i xj and Szegö’s result

follows from Scott and Sokals’ theorem with x = (1, . . . , 1).
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Complete monotonicity

Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn
>0,

just means that TG (x)−α, x ∈ Rn
>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,

just means that TG (x)−α, x ∈ Rn
>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,
just means that TG (x)−α, x ∈ Rn

>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,
just means that TG (x)−α, x ∈ Rn

>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn

is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,
just means that TG (x)−α, x ∈ Rn

>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM),

if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,
just means that TG (x)−α, x ∈ Rn

>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,
just means that TG (x)−α, x ∈ Rn

>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,
just means that TG (x)−α, x ∈ Rn

>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x

: (−1)k f (k)(x) =
k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,
just means that TG (x)−α, x ∈ Rn

>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,
just means that TG (x)−α, x ∈ Rn

>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x

: (−1)k f (k)(x) = e−x > 0 for x > 0



Complete monotonicity
Nonnegativity of Taylor coefficients of y 7→ TG (x− y)−α, x ∈ Rn

>0,
just means that TG (x)−α, x ∈ Rn

>0, is completely monotone.

A smooth function f : C → R on an open convex cone C ⊂ Rn is
completely monotone (CM), if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Remark A function f : C = Rn
>0 → R is CM if and only if Taylor

coefficients of y 7→ f (x− y) are nonnegative for all x ∈ C = Rn
>0.

Simplest CM functions (on C = R>0):
•

f (x) =
1

x
: (−1)k f (k)(x) =

k!

xk+1
> 0 for x > 0

•
f (x) = e−x : (−1)k f (k)(x) = e−x > 0 for x > 0



Integral representation of CM functions

A function f : C → R is CM if for all k ∈ N and v1, . . . , vk ∈ C,

(−1)k Dv1 . . .Dvk f (x) ≥ 0

Theorem (Bernstein-Hausdorff-Widder-Choquet)

f : C → R is CM if and only if there is a unique Borel measure µ
supported on the dual cone C∗ := {θ ∈ Rn : θTx ≥ 0, x ∈ C} s.t.

f (x) =

ˆ
C∗

exp(−θTx) dµ(θ), x ∈ C.

Observation In particular, a CM function f is non-negative,
−∇f (x) takes values in the dual cone C∗ and f is convex, since

f (α1x1 + α2x2) =

ˆ
C∗

exp
(
−(α1θ

Tx1 + α2θ
Tx2)

)
dµ(θ)

≤
ˆ
C∗

α1 exp(−θTx1) + α2 exp(−θTx2) dµ(θ) = α1f (x1) + α2f (x2)
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CM and powers of forms

We are interested in functions f = p−α,

where p is a real
homogeneous polynomial (form). When is such f CM?

Necessary conditions for f = p−α : C → R to be CM:

• α ≥ 0 (enough to look at p(x) = xd , x > 0)

• Scott and Sokal, 2014 : form p must be hyperbolic w.r.t. C,
that is, p(x) > 0 and for any a ∈ C and all x ∈ Rn, the
univariate polynomial t 7→ p(x + t · a) has only real roots.

Conj. (Micha lek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t.
C. Then there is α = α(p) > 0 such that p−α is CM, that is,
p(x)−α =

´
C∗ exp(−θTx)dµα(θ) for some measure µα on C∗.

Algebraic statistics : p(x)α exp(−(·)Tx)dµα, x ∈ C, is a family of
probability distributions on C∗. Generalizes many statistical models.
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Determinantal polynomials

Let A1, . . . ,An be d × d real symmetric matrices such that the
matrix a1A1 + · · · + anAn is positive definite for some a ∈ Rn.
Then det(x1A1 + · · · + xnAn) is hyperbolic w.r.t. (some) C ∋ a.

Theorem (Scott and Sokal, 2014)

Let α = 0, 12 , 1, 32 , . . . or α ≥ d−1
2 . Then the function

x ∈ C 7→ p(x)−α = det(x1A1 + · · · + xnAn)−α

is CM. If A1, . . . ,An span the space of d × d real symmetric
matrices, then p−α is CM only for α in the above range.

Corollary If p is a hyperbolic polynomial and some r -th power
p(x)r = det(x1A1 + · · · + xnAn) of p is determinantal with
matrices of size d × d , then p−rα is CM for α in the above range.

⇝ Conjecture of Micha lek et al. holds in this case!
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Elementary symmetric polynomials

Ed ,n(x) =
∑

1≤i1<···<id≤n

xi1 . . . xid , x ∈ Rn,

are hyperbolic w.r.t. some open convex cone C ⊇ Rn
>0.

E−α
1,n = (x1 + · · · + xn)−α, E−α

n,n = (x1 . . . xn)−α are CM for α ≥ 0.

Theorem (Scott and Sokal, 2014)

• E−α
2,n =

(∑
1=i<j≤n xixj

)−α
is CM iff α = 0 or α ≥ (n − 2)/2.

• E−α
n−1,n =

(∑n
i=1

∏
j ̸=i xj

)−α
is CM iff α = 0 α ≥ 1/2.

Conjecture (Scott and Sokal, 2014)

Let 2 ≤ d ≤ n. Then E−α
d ,n is CM if and only if α = 0 or α ≥ n−d
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Theorem (K., Michalek, Sturmfels, 2019 [“⇒” holds] )

If E−α
d ,n , d ≥ 2, is completely monotone, then α = 0 or α ≥ n−d

2 .

Proof sketch : One can write for x = (x1, . . . , xn−1)

Ed ,n(x, xn)−α = (xnEd−1,n−1(x) + Ed ,n−1(x))−α

If E−α
d ,n is CM, then it is CM in x for any fixed xn > 0. Signs of

x-derivatives of E−α
d ,n and of E−α

d−1,n−1 are the same for sufficiently

large xn > 0. By induction, α ≥ (n−1)−(d−1)
2 = n−d

2 .

K., Michalek and Sturmfels, 2019

There is αd ,n > 0 such that E−α
d ,n is CM for all α ≥ αd ,n.

⇝ Conjecture of Michalek et al. holds for all Ed ,n!
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d ,n and of E−α

d−1,n−1 are the same for sufficiently

large xn > 0. By induction, α ≥ (n−1)−(d−1)
2 = n−d

2 .

K., Michalek and Sturmfels, 2019

There is αd ,n > 0 such that E−α
d ,n is CM for all α ≥ αd ,n.

⇝ Conjecture of Michalek et al. holds for all Ed ,n!



What is left?

Conj. (Micha lek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t.
C. Then there is α = α(p) > 0 such that p−α is CM on C.

• Holds for p with determinantal power pr (Scott and Sokal)

• Holds for Ed ,n (K., Michalek and Sturmfels)

• Would be enough to prove (or disprove) for multi-affine
polynomials (follows from Grace–Walsh–Szegö theorem)

Brändén, 2011 : NO power pr of the hyperbolic polynomial

p = x21x
2
2 + 4(x1 + x2 + x3 + x4)(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)

can be determinantal.

Open question: is p−α CM for some α > 0?
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Part II



Notations

Hd ,n - space of n-ary forms (homogeneous polynomials) of deg d .
Cd ,n⊂ Hd ,n - open convex cone of forms positive on Rn \ {0}.
Cd ,n ⊂ Hd ,n - closed convex cone of non-negative forms.

Bombieri product: g =
∑

|α|=d gαx
α, h =

∑
|α|=d hαx

α

⟨g , h⟩ =
∑
|α|=d

(
d

α

)−1

gαhα

The dual cone to Cd ,n (the moment cone):

C∗
d ,n = {θ ∈ Hd ,n : ⟨θ, Cd ,n⟩ ≥ 0} = conv

{(
ℓT·

)d
: ℓ ∈ Rn

}
.

Σd ,n⊆ Cd ,n - closed convex cone of sums of squares.
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Motivation

Theorem (Hilbert, 1888)

Σd ,n = Cd ,n if and only if d = 2, n = 2 or (d , n) = (4, 3).

Testing membership in Cd ,n is in general NP-hard (d ≥ 4).

Checking whether or not a given f ∈ Hd ,n lies in Σd ,n is equivalent
to testing feasibility of a semidefinite program.

Remark In fact, Σd ,n is the image under a linear map of the cone

of positive semidefinite matrices (PSD cone) of size
(d/2
n−1

)
×
(d/2
n−1

)
.

Theorem (Scheiderer, 2018)

In general, Cd ,n is not linear image of the PSD cone of some size.

⇒ Cd ,n is a complicated cone!

Idea: Study “natural” functions on Cd ,n with the hope of
understanding it better.
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Sublevel sets of non-negative forms

The sublevel set of g ∈ Hd ,n: G := {x ∈ Rn : g(x) ≤ 1}.
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2  3 x1 + x22 x1 - 3 x22 ≤ 1

Positive definite

x
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2  3 x1 + x2
2 x1 - 3 x2

2 ≤ 1

Non-negative, not PD

x
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2  3 x1 + x22 x1 - 3 x22 -
1

100
x

1

2
+ x

2

23 ≤ 1

Not non-negative

The Lebesgue volume of G is finite ⇒ g ∈ Cd ,n (g is non-negative).

If g ∈ Cd ,n is positive definite, G is a compact subset of Rn with
non-empty interior and hence it has finite Lebesgue volume.
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Volume function

Cd ,n = {g ∈ Hd ,n : g(x) > 0, x ∈ Rn \ {0}} - the open convex
cone of positive definite forms. G = {x ∈ Rn : g(x) ≤ 1}
The volume function:

f : Cd ,n → R,

g 7→ vol(G) =

ˆ
G
dx =

1

Γ(1 + n/d)

ˆ
Rn

exp(−g(x))dx

Lasserre, 2016: the non-negative function f is strictly convex.

K. and Lasserre, 2020: bd ,n := (x21 + · · · + x2n )d/2 is the unique
minimum of f among all g ∈ Hd ,n with ∥g∥ =

√
⟨g , g⟩ = ∥bd ,n∥.

In other words, the Euclidean ball
{x21 + · · ·+x2n ≤ 1} has the small-
est Lebesgue volume among sub-
level sets G of all forms g ∈ Hd ,n

with ∥g∥ = ∥bd ,n∥.
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Complete monotonicity of vol

K. and Lasserre, 2023

The function f (g) = vol(G) is completely monotone on Cd ,n and

f (g) =

ˆ
C∗
d,n

exp(−⟨θ, g⟩) dµ(θ)

Γ (1 + n/d)
,

where µ is the push-forward of the Lebesgue measure on Rn under

the Veronese map ℓ 7→ θℓ :=
(
ℓT·

)d
.

d=2 : f (g) =
√
π
n

Γ(1+n/2) det(G )−1/2 for g = xTGx ∈ C2,n.

⇒ for quadratic forms our result also follows from

Theorem (Scott and Sokal, 2014)

The function G 7→ det(G )−α on the cone of n × n positive definite
matrices is CM iff α = 0, 12 , 1, 32 , . . . or α ≥ n−1

2 .
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Behaviour of vol on the boundary of Cd ,n

A function φ : C ⊂ RN → R is a barrier, if φ(g) → +∞ as g → ∂C.

Koecher, 1957 : φ(g) =
´
C∗ exp(−θTg) dg is a (log-convex) barrier.

Güler, 1996 : logφ is a universal barrier function (used in interior
point methods for solving convex optimization problems).

Question

Is the volume function f (g) = 1
Γ(1+n/d)

´
C∗
d,n

exp(−⟨θ, g⟩)dµ(g)

a barrier for Cd ,n? Is it true that vol(G) = ∞ for g ∈ ∂Cd ,n?

d = 2 : g(x) = xTGx has finite vol(G) iff G is PD.

A non-negative g ∈ Cd ,n is called generic

,

if at every its real zero

x ∈ Rn \ {0} the Hessian
(

∂2g
∂xi∂xj

(x)
)

has rank n − 1.

Theorem (K. and Lasserre, 2023)

For even d ≥ 4 any generic form g ∈ Cd ,n has finite vol(G).
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Güler, 1996 : logφ is a universal barrier function (used in interior
point methods for solving convex optimization problems).

Question

Is the volume function f (g) = 1
Γ(1+n/d)

´
C∗
d,n

exp(−⟨θ, g⟩)dµ(g)

a barrier for Cd ,n? Is it true that vol(G) = ∞ for g ∈ ∂Cd ,n?

d = 2 : g(x) = xTGx has finite vol(G) iff G is PD.

A non-negative g ∈ Cd ,n is called generic

,

if at every its real zero

x ∈ Rn \ {0} the Hessian
(

∂2g
∂xi∂xj

(x)
)

has rank n − 1.

Theorem (K. and Lasserre, 2023)

For even d ≥ 4 any generic form g ∈ Cd ,n has finite vol(G).



Behaviour of vol on the boundary of Cd ,n
A function φ : C ⊂ RN → R is a barrier, if φ(g) → +∞ as g → ∂C.

Koecher, 1957 : φ(g) =
´
C∗ exp(−θTg) dg

is a (log-convex) barrier.
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Güler, 1996 : logφ is a universal barrier function (used in interior
point methods for solving convex optimization problems).

Question

Is the volume function f (g) = 1
Γ(1+n/d)

´
C∗
d,n

exp(−⟨θ, g⟩)dµ(g)

a barrier for Cd ,n? Is it true that vol(G) = ∞ for g ∈ ∂Cd ,n?

d = 2 : g(x) = xTGx has finite vol(G) iff G is PD.

A non-negative g ∈ Cd ,n is called generic

,

if at every its real zero

x ∈ Rn \ {0} the Hessian
(

∂2g
∂xi∂xj

(x)
)

has rank n − 1.

Theorem (K. and Lasserre, 2023)

For even d ≥ 4 any generic form g ∈ Cd ,n has finite vol(G).



Behaviour of vol on the boundary of Cd ,n
A function φ : C ⊂ RN → R is a barrier, if φ(g) → +∞ as g → ∂C.

Koecher, 1957 : φ(g) =
´
C∗ exp(−θTg) dg is a (log-convex) barrier.
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Full characterization for n = 2

Theorem (K. and Lasserre, 2023)

Let g ∈ Cd ,2. Then vol(G) is finite iff the multiplicity of each real
zero of g is at most d/2 − 1.
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2 x1 - 3 x2

2 ≤ 1

d = 6, 3 zeros of multiplicity 2,
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d = 8, 2 zeros of multiplicity 2, 1
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Characterization for higher n?

For n ≥ 3 and even d ≥ 4, genericity of g ∈ Cd ,n is only a
sufficient condition for finiteness of f (g) = vol(G).

Problem

Let g ∈ Cd ,n be a non-negative form with isolated real zeros
in RPn−1. Determine whether vol(G) is finite in terms of some
conditions (e.g. singularity type) on real zeros of g .

Suppose that g ∈ Cd ,n has only isolated zeros in RPn−1 that all lie
in Rn−1 ≃ {x ∈ RPn−1 : xn ̸= 0}. Denote by y1, . . . , yk ∈ Rn−1

the corresponding zeros of the dehomogenization g̃(y) = g(y, 1).
Then vol(G) < ∞ iff integrals

ˆ
Uj

1

g̃(y)n/d
dy, j = 1, . . . , k,

over (arbitrary) small neighborhoods of y1, . . . , yk converge.
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Other functions on Cd ,n?

For a convex set G ⊂ Rn the volume of its ε-neighborhood

vol(G + εB) =
n∑

j=0

εn−jκn−j Vj(G)

behaves polynomially (on ε), where κn = πn/2/Γ(1 + n/2) is the
volume of the unit Euclidean ball B ⊂ Rn. The coefficients Vj(G)
are called intrinsic volumes of G. One has Vn(G) = vol(G).

Remark Same expansion holds for subsets G with positive reach.

Question : what can be said about the intrinsic volume function

fj(g) := Vj(G), G = {g ≤ 1}

of sublevel sets of PD forms g ∈ Cd ,n? Is it completely monotone?
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Conclusion

Complete monotonicity naturally appears in

• analytic combinatorics (∼ generating polynomials of some
classes of matroids / graphs)
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sublevel sets of nonnegative homogeneous polynomials)

• optimization (universal barrier function)

• holonomic systems (∼ hypergeometric functions)

• quantum field theory (Feynman integrals, scattering
amplitudes, etc.) ⇝ a recent paper by J. Henn and P. Raman
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