Holonomic Techniques for Feynman Integrals

Completely monotone functions and applications

Khazhgali Kozhasov (LJAD, UniCA) based on works with J.-B. Lasserre, M. Michałek and B. Sturmfels

October 17, 2024

Complete monotonicity and ...

Part I

Hyperbolic polynomials

Complete monotonicity and ...

Part I

Hyperbolic polynomials (real algebraic geometry, combinatorics, algebraic statistics)

Complete monotonicity and ...

Part I

Hyperbolic polynomials (real algebraic geometry, combinatorics, algebraic statistics)

Part II

Nonnegative polynomials

Complete monotonicity and ...

Part I

Hyperbolic polynomials (real algebraic geometry, combinatorics, algebraic statistics)

Part II

Nonnegative polynomials (real algebraic geometry, polynomial optimization)

In 1920's K. Friedrichs and H. Lewy were studying discretized wave equation in 2D $\,$

In 1920's K. Friedrichs and H. Lewy were studying discretized wave equation in 2D $\,$

 $(\Delta_k \Delta_\ell + \Delta_k \Delta_m + \Delta_\ell \Delta_m) a_{k,\ell,m} = 0, \quad \Delta_j a_j := a_j - a_{j-1}.$

In 1920's K. Friedrichs and H. Lewy were studying discretized wave equation in 2D $\,$

$$(\Delta_k \Delta_\ell + \Delta_k \Delta_m + \Delta_\ell \Delta_m) a_{k,\ell,m} = 0, \quad \Delta_j a_j := a_j - a_{j-1}.$$

They observed that Taylor coefficients $a_{k,\ell,m}$ of the function

$$\frac{1}{(1-x)(1-y)+(1-x)(1-z)+(1-y)(1-z)} = \sum_{k,\ell,m\geq 0} a_{k,\ell,m} x^k y^\ell z^m$$

In 1920's K. Friedrichs and H. Lewy were studying discretized wave equation in 2D $\,$

$$(*) \quad (\Delta_k \Delta_\ell + \Delta_k \Delta_m + \Delta_\ell \Delta_m) a_{k,\ell,m} = 0, \quad \Delta_j a_j := a_j - a_{j-1}.$$

They observed that Taylor coefficients $a_{k,\ell,m}$ of the function

$$\frac{1}{(1-x)(1-y)+(1-x)(1-z)+(1-y)(1-z)} = \sum_{k,\ell,m\geq 0} a_{k,\ell,m} x^k y^\ell z^m$$

satisfy the difference equation (*).

$$\frac{1}{(1-x)(1-y)+(1-x)(1-z)+(1-y)(1-z)} = \sum_{k,\ell,m\geq 0} a_{k,\ell,m} x^k y^\ell z^m$$

Friedrichs and Lewy computed several coefficients $a_{k,\ell,m}$ and

$$\frac{1}{(1-x)(1-y)+(1-x)(1-z)+(1-y)(1-z)} = \sum_{k,\ell,m\geq 0} a_{k,\ell,m} x^k y^\ell z^m$$

Friedrichs and Lewy computed several coefficients $a_{k,\ell,m}$ and these turned out to be positive $(a_{k,\ell,m} > 0)$.

$$\frac{1}{(1-x)(1-y)+(1-x)(1-z)+(1-y)(1-z)} = \sum_{k,\ell,m\geq 0} a_{k,\ell,m} x^k y^\ell z^m$$

Friedrichs and Lewy computed several coefficients $a_{k,\ell,m}$ and these turned out to be positive $(a_{k,\ell,m} > 0)$.

They wanted to exploit positivity of $a_{k,\ell,m}$ for proving convergence of this (discrete) solution to a (continuous) solution *a* of the wave equation (written in different coordinates)

$$(\partial_x \partial_y + \partial_x \partial_z + \partial_y \partial_z) a = 0.$$

$$\frac{1}{(1-x)(1-y)+(1-x)(1-z)+(1-y)(1-z)} = \sum_{k,\ell,m\geq 0} a_{k,\ell,m} x^k y^\ell z^m$$

Friedrichs and Lewy computed several coefficients $a_{k,\ell,m}$ and these turned out to be positive $(a_{k,\ell,m} > 0)$.

They wanted to exploit positivity of $a_{k,\ell,m}$ for proving convergence of this (discrete) solution to a (continuous) solution *a* of the wave equation (written in different coordinates)

$$(\partial_x \partial_y + \partial_x \partial_z + \partial_y \partial_z) a = 0.$$

In 1930 Lewy wrote to G. Szegö asking him to prove positivity of Taylor coefficients $(a_{k,\ell,m} > 0)$ in general.

Szegö, 1932:

Szegö, 1932: for any *n* the Taylor coefficients $a_{k_1,...,k_n}$ of

Szegö, 1932: for any *n* the Taylor coefficients $a_{k_1,...,k_n}$ of

$$\frac{1}{\sum_{i=1}^{n}\prod_{j\neq i}(1-x_{i})} = \sum_{k_{1},\ldots,k_{n}\geq 0} a_{k_{1},\ldots,k_{n}} x_{1}^{k_{1}}\ldots x_{n}^{k_{n}}.$$

Szegö, 1932: for any *n* the Taylor coefficients $a_{k_1,...,k_n}$ of

$$\frac{1}{\sum_{i=1}^{n}\prod_{j\neq i}(1-x_{i})} = \sum_{k_{1},\ldots,k_{n}\geq 0} a_{k_{1},\ldots,k_{n}} x_{1}^{k_{1}}\ldots x_{n}^{k_{n}}.$$

are positive.

Szegö, 1932: for any *n* the Taylor coefficients $a_{k_1,...,k_n}$ of

$$\frac{1}{\sum_{i=1}^{n}\prod_{j\neq i}(1-x_{i})} = \sum_{k_{1},\ldots,k_{n}\geq 0} a_{k_{1},\ldots,k_{n}} x_{1}^{k_{1}}\ldots x_{n}^{k_{n}}.$$

are positive. \rightsquigarrow Positive answer to Lewy's question (n = 3).

Szegö, 1932: for any *n* the Taylor coefficients $a_{k_1,...,k_n}$ of

$$\frac{1}{\sum_{i=1}^{n}\prod_{j\neq i}(1-x_{i})} = \sum_{k_{1},\ldots,k_{n}\geq 0} a_{k_{1},\ldots,k_{n}} x_{1}^{k_{1}}\ldots x_{n}^{k_{n}}.$$

are positive. \rightsquigarrow Positive answer to Lewy's question (n = 3). More generally, Szegö proved

Szegö, 1932: for any *n* the Taylor coefficients $a_{k_1,...,k_n}$ of

$$\frac{1}{\sum_{i=1}^{n}\prod_{j\neq i}(1-x_{i})} = \sum_{k_{1},\ldots,k_{n}\geq 0} a_{k_{1},\ldots,k_{n}} x_{1}^{k_{1}}\ldots x_{n}^{k_{n}}.$$

are positive. \rightsquigarrow Positive answer to Lewy's question (n = 3). More generally, Szegö proved that for any $\alpha \ge 1/2$

Szegö, 1932: for any *n* the Taylor coefficients $a_{k_1,...,k_n}$ of

$$\frac{1}{\sum_{i=1}^{n}\prod_{j\neq i}(1-x_{i})} = \sum_{k_{1},\ldots,k_{n}\geq 0} a_{k_{1},\ldots,k_{n}} x_{1}^{k_{1}}\ldots x_{n}^{k_{n}}.$$

are positive. \rightsquigarrow Positive answer to Lewy's question (n = 3). More generally, Szegö proved that for any $\alpha \ge 1/2$ the function

$$\frac{1}{\left[\sum_{i=1}^{n}\prod_{j\neq i}(1-x_{i})\right]^{\alpha}} = \sum_{k_{1},\ldots,k_{n}\geq 0} a_{k_{1},\ldots,k_{n}}^{(\alpha)} x_{1}^{k_{1}}\ldots x_{n}^{k_{n}}$$

has <u>nonnegative</u> Taylor coefficients $a_{k_1,...,k_n}^{(\alpha)} \ge 0$.

Szegö, 1932: for any *n* the Taylor coefficients $a_{k_1,...,k_n}$ of

$$\frac{1}{\sum_{i=1}^{n}\prod_{j\neq i}(1-x_{i})} = \sum_{k_{1},\ldots,k_{n}\geq 0} a_{k_{1},\ldots,k_{n}} x_{1}^{k_{1}}\ldots x_{n}^{k_{n}}.$$

are positive. \rightsquigarrow Positive answer to Lewy's question (n = 3). More generally, Szegö proved that for any $\alpha \ge 1/2$ the function

$$\frac{1}{\left[\sum_{i=1}^{n}\prod_{j\neq i}(1-x_{i})\right]^{\alpha}} = \sum_{k_{1},\dots,k_{n}\geq 0} a_{k_{1},\dots,k_{n}}^{(\alpha)} x_{1}^{k_{1}}\dots x_{n}^{k_{n}}$$

has <u>nonnegative</u> Taylor coefficients $a_{k_1,...,k_n}^{(\alpha)} \ge 0$.

He expressed coefficients as some integrals of products of Bessel functions which are shown to be positive (nonnegative).

The spanning-tree polynomial of a connected graph G = (E, V) is

$$T_G(\mathbf{x}) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad \mathbf{x} \in \mathbb{R}^E,$$

The spanning-tree polynomial of a connected graph G = (E, V) is

$$T_G(\mathbf{x}) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad \mathbf{x} \in \mathbb{R}^E,$$

where the sum is over spanning (containing all vertices) trees of G.

The spanning-tree polynomial of a connected graph G = (E, V) is

$$T_G(\mathbf{x}) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad \mathbf{x} \in \mathbb{R}^E,$$

where the sum is over spanning (containing all vertices) trees of *G*. Theorem (Scott and Sokal, 2014) Let G = (V, E) be a series-parallel graph.

The spanning-tree polynomial of a connected graph G = (E, V) is

$$T_G(\mathbf{x}) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad \mathbf{x} \in \mathbb{R}^E,$$

where the sum is over spanning (containing all vertices) trees of *G*. Theorem (Scott and Sokal, 2014) Let G = (V, E) be a series-parallel graph. Then for any $\alpha \ge 1/2$

The spanning-tree polynomial of a connected graph G = (E, V) is

$$T_G(\mathbf{x}) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad \mathbf{x} \in \mathbb{R}^E,$$

where the sum is over spanning (containing all vertices) trees of *G*. Theorem (Scott and Sokal, 2014) Let G = (V, E) be a series-parallel graph. Then for any $\alpha \ge 1/2$ and any positive vector $\mathbf{x} \in \mathbb{R}_{>0}^{E}$,

The spanning-tree polynomial of a connected graph G = (E, V) is

$$T_G(\mathbf{x}) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad \mathbf{x} \in \mathbb{R}^E,$$

where the sum is over spanning (containing all vertices) trees of *G*. Theorem (Scott and Sokal, 2014) Let G = (V, E) be a series-parallel graph. Then for any $\alpha \ge 1/2$ and any positive vector $\mathbf{x} \in \mathbb{R}_{>0}^{E}$, the function

$$\mathbf{y} \mapsto T_G(\mathbf{x} - \mathbf{y})^{-\alpha}$$

has nonnegative Taylor coefficients.

The spanning-tree polynomial of a connected graph G = (E, V) is

$$T_G(\mathbf{x}) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad \mathbf{x} \in \mathbb{R}^E,$$

where the sum is over spanning (containing all vertices) trees of *G*. Theorem (Scott and Sokal, 2014) Let G = (V, E) be a series-parallel graph. Then for any $\alpha \ge 1/2$ and any positive vector $\mathbf{x} \in \mathbb{R}_{>0}^{E}$, the function

$$\mathbf{y} \mapsto T_G(\mathbf{x} - \mathbf{y})^{-\alpha}$$

has nonnegative Taylor coefficients.

The spanning-tree polynomial of a connected graph G = (E, V) is

$$T_G(\mathbf{x}) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad \mathbf{x} \in \mathbb{R}^E,$$

where the sum is over spanning (containing all vertices) trees of *G*. Theorem (Scott and Sokal, 2014) Let G = (V, E) be a series-parallel graph. Then for any $\alpha \ge 1/2$ and any positive vector $\mathbf{x} \in \mathbb{R}_{>0}^{E}$, the function

$$\mathbf{y} \mapsto T_G(\mathbf{x} - \mathbf{y})^{-\alpha}$$

has nonnegative Taylor coefficients.

If G is the n-cycle, $T_G(\mathbf{x}) = \sum_{i=1}^n \prod_{j \neq i} x_j$

The spanning-tree polynomial of a connected graph G = (E, V) is

$$T_G(\mathbf{x}) = \sum_{\mathcal{T}} \prod_{e \in \mathcal{T}} x_e, \quad \mathbf{x} \in \mathbb{R}^E,$$

where the sum is over spanning (containing all vertices) trees of *G*. Theorem (Scott and Sokal, 2014) Let G = (V, E) be a series-parallel graph. Then for any $\alpha \ge 1/2$ and any positive vector $\mathbf{x} \in \mathbb{R}^{E}_{\ge 0}$, the function

$$\mathbf{y} \mapsto T_G(\mathbf{x} - \mathbf{y})^{-\alpha}$$

has nonnegative Taylor coefficients.

If G is the *n*-cycle, $T_G(\mathbf{x}) = \sum_{i=1}^n \prod_{j \neq i} x_j$ and Szegö's result follows from Scott and Sokals' theorem with $\mathbf{x} = (1, ..., 1)$.

Complete monotonicity

Complete monotonicity

Nonnegativity of Taylor coefficients of $\mathbf{y}\mapsto {\mathcal T}_{{\mathcal G}}(\mathbf{x}-\mathbf{y})^{-lpha}$, $\mathbf{x}\in \mathbb{R}^n_{>0}$,
Nonnegativity of Taylor coefficients of $\mathbf{y} \mapsto \mathcal{T}_G(\mathbf{x} - \mathbf{y})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, just means that $\mathcal{T}_G(\mathbf{x})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, is completely monotone.

Nonnegativity of Taylor coefficients of $\mathbf{y} \mapsto \mathcal{T}_G(\mathbf{x} - \mathbf{y})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, just means that $\mathcal{T}_G(\mathbf{x})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, is completely monotone.

A smooth function $f:\mathcal{C}
ightarrow \mathbb{R}$ on an open convex cone $\mathcal{C} \subset \mathbb{R}^n$

Nonnegativity of Taylor coefficients of $\mathbf{y} \mapsto \mathcal{T}_G(\mathbf{x} - \mathbf{y})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, just means that $\mathcal{T}_G(\mathbf{x})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, is completely monotone.

A smooth function $f : C \to \mathbb{R}$ on an open convex cone $C \subset \mathbb{R}^n$ is completely monotone (CM),

Nonnegativity of Taylor coefficients of $\mathbf{y} \mapsto \mathcal{T}_G(\mathbf{x} - \mathbf{y})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, just means that $\mathcal{T}_G(\mathbf{x})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, is completely monotone.

A smooth function $f : \mathcal{C} \to \mathbb{R}$ on an open convex cone $\mathcal{C} \subset \mathbb{R}^n$ is completely monotone (CM), if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathcal{C}$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Nonnegativity of Taylor coefficients of $\mathbf{y} \mapsto \mathcal{T}_G(\mathbf{x} - \mathbf{y})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, just means that $\mathcal{T}_G(\mathbf{x})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, is completely monotone.

A smooth function $f : C \to \mathbb{R}$ on an open convex cone $C \subset \mathbb{R}^n$ is completely monotone (CM), if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in C$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Remark A function $f : \mathcal{C} = \mathbb{R}_{>0}^n \to \mathbb{R}$ is CM if and only if Taylor coefficients of $\mathbf{y} \mapsto f(\mathbf{x} - \mathbf{y})$ are nonnegative for all $\mathbf{x} \in \mathcal{C} = \mathbb{R}_{>0}^n$.

Nonnegativity of Taylor coefficients of $\mathbf{y} \mapsto \mathcal{T}_G(\mathbf{x} - \mathbf{y})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, just means that $\mathcal{T}_G(\mathbf{x})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, is completely monotone.

A smooth function $f : C \to \mathbb{R}$ on an open convex cone $C \subset \mathbb{R}^n$ is completely monotone (CM), if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in C$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

$$f(x) = \frac{1}{x}$$

Nonnegativity of Taylor coefficients of $\mathbf{y} \mapsto \mathcal{T}_G(\mathbf{x} - \mathbf{y})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, just means that $\mathcal{T}_G(\mathbf{x})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, is completely monotone.

A smooth function $f : C \to \mathbb{R}$ on an open convex cone $C \subset \mathbb{R}^n$ is completely monotone (CM), if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in C$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

$$f(x) = \frac{1}{x}$$
 : $(-1)^k f^{(k)}(x) = \frac{k!}{x^{k+1}} > 0$ for $x > 0$

Nonnegativity of Taylor coefficients of $\mathbf{y} \mapsto \mathcal{T}_G(\mathbf{x} - \mathbf{y})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, just means that $\mathcal{T}_G(\mathbf{x})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, is completely monotone.

A smooth function $f : C \to \mathbb{R}$ on an open convex cone $C \subset \mathbb{R}^n$ is completely monotone (CM), if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in C$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

$$f(x) = \frac{1}{x}$$
 : $(-1)^k f^{(k)}(x) = \frac{k!}{x^{k+1}} > 0$ for $x > 0$

Nonnegativity of Taylor coefficients of $\mathbf{y} \mapsto \mathcal{T}_G(\mathbf{x} - \mathbf{y})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, just means that $\mathcal{T}_G(\mathbf{x})^{-\alpha}$, $\mathbf{x} \in \mathbb{R}^n_{>0}$, is completely monotone.

A smooth function $f : C \to \mathbb{R}$ on an open convex cone $C \subset \mathbb{R}^n$ is completely monotone (CM), if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in C$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

$$f(x) = \frac{1}{x}$$
 : $(-1)^k f^{(k)}(x) = \frac{k!}{x^{k+1}} > 0$ for $x > 0$

$$f(x) = e^{-x}$$
 : $(-1)^k f^{(k)}(x) = e^{-x} > 0$ for $x > 0$

A function $f : C \to \mathbb{R}$ is CM if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in C$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

A function $f : \mathcal{C} \to \mathbb{R}$ is CM if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathcal{C}$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Theorem (Bernstein-Hausdorff-Widder-Choquet)

A function $f : C \to \mathbb{R}$ is CM if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in C$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Theorem (Bernstein-Hausdorff-Widder-Choquet) $f: \mathcal{C} \to \mathbb{R}$ is CM

A function $f : \mathcal{C} \to \mathbb{R}$ is CM if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathcal{C}$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Theorem (Bernstein-Hausdorff-Widder-Choquet)

 $f : C \to \mathbb{R}$ is CM if and only if there is a unique Borel measure μ supported on the dual cone $C^* := \{\theta \in \mathbb{R}^n : \theta^T \mathbf{x} \ge 0, \mathbf{x} \in C\}$

A function $f:\mathcal{C} \to \mathbb{R}$ is CM if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathcal{C}$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Theorem (Bernstein-Hausdorff-Widder-Choquet)

 $f : C \to \mathbb{R}$ is CM if and only if there is a unique Borel measure μ supported on the dual cone $C^* := \{\theta \in \mathbb{R}^n : \theta^T \mathbf{x} \ge 0, \mathbf{x} \in C\}$ s.t.

$$f(\mathbf{x}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu(\theta), \quad \mathbf{x} \in \mathcal{C}.$$

A function $f:\mathcal{C} \to \mathbb{R}$ is CM if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathcal{C}$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Theorem (Bernstein-Hausdorff-Widder-Choquet)

 $f : C \to \mathbb{R}$ is CM if and only if there is a unique Borel measure μ supported on the dual cone $C^* := \{\theta \in \mathbb{R}^n : \theta^T \mathbf{x} \ge 0, \mathbf{x} \in C\}$ s.t.

$$f(\mathbf{x}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu(\theta), \quad \mathbf{x} \in \mathcal{C}.$$

Observation In particular,

A function $f:\mathcal{C}\to\mathbb{R}$ is CM if for all $k\in\mathbb{N}$ and $\mathbf{v}_1,\ldots,\mathbf{v}_k\in\mathcal{C}$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Theorem (Bernstein-Hausdorff-Widder-Choquet)

 $f : C \to \mathbb{R}$ is CM if and only if there is a unique Borel measure μ supported on the dual cone $C^* := \{\theta \in \mathbb{R}^n : \theta^T \mathbf{x} \ge 0, \mathbf{x} \in C\}$ s.t.

$$f(\mathbf{x}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu(\theta), \quad \mathbf{x} \in \mathcal{C}.$$

Observation In particular, a CM function f is non-negative,

A function $f : \mathcal{C} \to \mathbb{R}$ is CM if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathcal{C}$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Theorem (Bernstein-Hausdorff-Widder-Choquet)

 $f : C \to \mathbb{R}$ is CM if and only if there is a unique Borel measure μ supported on the dual cone $C^* := \{\theta \in \mathbb{R}^n : \theta^T \mathbf{x} \ge 0, \mathbf{x} \in C\}$ s.t.

$$f(\mathbf{x}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu(\theta), \quad \mathbf{x} \in \mathcal{C}.$$

Observation In particular, a CM function f is non-negative, $-\nabla f(\mathbf{x})$ takes values in the dual cone C^*

A function $f : \mathcal{C} \to \mathbb{R}$ is CM if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathcal{C}$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Theorem (Bernstein-Hausdorff-Widder-Choquet)

 $f : C \to \mathbb{R}$ is CM if and only if there is a unique Borel measure μ supported on the dual cone $C^* := \{\theta \in \mathbb{R}^n : \theta^T \mathbf{x} \ge 0, \mathbf{x} \in C\}$ s.t.

$$f(\mathbf{x}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu(\theta), \quad \mathbf{x} \in \mathcal{C}.$$

Observation In particular, a CM function f is non-negative, $-\nabla f(\mathbf{x})$ takes values in the dual cone C^* and f is convex,

A function $f:\mathcal{C} \to \mathbb{R}$ is CM if for all $k \in \mathbb{N}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathcal{C}$,

 $(-1)^k D_{\mathbf{v}_1} \dots D_{\mathbf{v}_k} f(\mathbf{x}) \geq 0$

Theorem (Bernstein-Hausdorff-Widder-Choquet)

 $f : C \to \mathbb{R}$ is CM if and only if there is a unique Borel measure μ supported on the dual cone $C^* := \{\theta \in \mathbb{R}^n : \theta^T \mathbf{x} \ge 0, \mathbf{x} \in C\}$ s.t.

$$f(\mathbf{x}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu(\theta), \quad \mathbf{x} \in \mathcal{C}.$$

Observation In particular, a CM function f is non-negative, $-\nabla f(\mathbf{x})$ takes values in the dual cone C^* and f is convex, since

$$\begin{aligned} f(\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2) &= \int_{\mathcal{C}^*} \exp\left(-(\alpha_1 \theta^\mathsf{T} \mathbf{x}_1 + \alpha_2 \theta^\mathsf{T} \mathbf{x}_2)\right) \, \mathrm{d}\mu(\theta) \\ &\leq \int_{\mathcal{C}^*} \alpha_1 \exp(-\theta^\mathsf{T} \mathbf{x}_1) + \alpha_2 \exp(-\theta^\mathsf{T} \mathbf{x}_2) \, \mathrm{d}\mu(\theta) = \alpha_1 f(\mathbf{x}_1) + \alpha_2 f(\mathbf{x}_2) \, \mathrm{d}\mu(\theta) \end{aligned}$$

We are interested in functions $f = p^{-\alpha}$,

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form).

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

Necessary conditions for $f = p^{-\alpha} : \mathcal{C} \to \mathbb{R}$ to be CM:

• $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ,

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

Necessary conditions for $f = p^{-\alpha} : C \to \mathbb{R}$ to be CM:

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

Necessary conditions for $f = p^{-\alpha} : C \to \mathbb{R}$ to be CM:

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C.

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

Necessary conditions for $f = p^{-\alpha} : C \to \mathbb{R}$ to be CM:

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM,

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

Necessary conditions for $f = p^{-\alpha} : C \to \mathbb{R}$ to be CM:

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM, that is, $p(\mathbf{x})^{-\alpha} = \int_{C^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu_{\alpha}(\theta)$ for some measure μ_{α} on C^* .

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

Necessary conditions for $f = p^{-\alpha} : C \to \mathbb{R}$ to be CM:

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM, that is, $p(\mathbf{x})^{-\alpha} = \int_{C^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu_{\alpha}(\theta)$ for some measure μ_{α} on C^* .

Algebraic statistics: $p(\mathbf{x})^{\alpha} \exp(-(\cdot)^{\mathsf{T}} \mathbf{x}) d\mu_{\alpha}$, $\mathbf{x} \in \mathcal{C}$,

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

Necessary conditions for $f = p^{-\alpha} : C \to \mathbb{R}$ to be CM:

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM, that is, $p(\mathbf{x})^{-\alpha} = \int_{C^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu_{\alpha}(\theta)$ for some measure μ_{α} on C^* .

Algebraic statistics: $p(\mathbf{x})^{\alpha} \exp(-(\cdot)^{\mathsf{T}} \mathbf{x}) d\mu_{\alpha}$, $\mathbf{x} \in \mathcal{C}$, is a family of probability distributions on \mathcal{C}^* .

We are interested in functions $f = p^{-\alpha}$, where p is a <u>real</u> homogeneous polynomial (form). When is such f CM?

Necessary conditions for $f = p^{-\alpha} : C \to \mathbb{R}$ to be CM:

- $\alpha \ge 0$ (enough to look at $p(x) = x^d$, x > 0)
- Scott and Sokal, 2014: form p must be hyperbolic w.r.t. C, that is, p(x) > 0 and for any a ∈ C and all x ∈ ℝⁿ, the univariate polynomial t → p(x + t ⋅ a) has only real roots.

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM, that is, $p(\mathbf{x})^{-\alpha} = \int_{C^*} \exp(-\theta^{\mathsf{T}} \mathbf{x}) d\mu_{\alpha}(\theta)$ for some measure μ_{α} on C^* .

Algebraic statistics: $p(\mathbf{x})^{\alpha} \exp(-(\cdot)^{\mathsf{T}}\mathbf{x}) d\mu_{\alpha}$, $\mathbf{x} \in \mathcal{C}$, is a family of probability distributions on \mathcal{C}^* . Generalizes many statistical models.
Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$.

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(x_1A_1 + \cdots + x_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$.

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(x_1A_1 + \cdots + x_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$. Theorem (Scott and Sokal, 2014) Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{d-1}{2}$.

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(x_1A_1 + \cdots + x_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$. Theorem (Scott and Sokal, 2014) Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{d-1}{2}$. Then the function $\mathbf{x} \in \mathcal{C} \mapsto p(\mathbf{x})^{-\alpha} = \det(x_1A_1 + \cdots + x_nA_n)^{-\alpha}$

is CM.

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(x_1A_1 + \cdots + x_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$. Theorem (Scott and Sokal, 2014) Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{d-1}{2}$. Then the function $\mathbf{x} \in \mathcal{C} \mapsto p(\mathbf{x})^{-\alpha} = \det(x_1A_1 + \cdots + x_nA_n)^{-\alpha}$ is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices.

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(\mathbf{x}_1A_1 + \cdots + \mathbf{x}_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$. Theorem (Scott and Sokal, 2014) Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{d-1}{2}$. Then the function $\mathbf{x} \in \mathcal{C} \mapsto p(\mathbf{x})^{-\alpha} = \det(x_1A_1 + \cdots + x_nA_n)^{-\alpha}$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then $p^{-\alpha}$ is CM only for α in the above range.

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(x_1A_1 + \cdots + x_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$. Theorem (Scott and Sokal, 2014) Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{d-1}{2}$. Then the function $\mathbf{x} \in \mathcal{C} \mapsto p(\mathbf{x})^{-\alpha} = \det(x_1A_1 + \cdots + x_nA_n)^{-\alpha}$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then $p^{-\alpha}$ is CM only for α in the above range. Corollary If p is a hyperbolic polynomial

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(x_1A_1 + \cdots + x_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$. Theorem (Scott and Sokal, 2014) Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{d-1}{2}$. Then the function

 $\mathbf{x} \in \mathcal{C} \mapsto p(\mathbf{x})^{-lpha} = \det(x_1A_1 + \cdots + x_nA_n)^{-lpha}$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then $p^{-\alpha}$ is CM only for α in the above range. Corollary If p is a hyperbolic polynomial and some r-th power $p(\mathbf{x})^r = \det(x_1A_1 + \cdots + x_nA_n)$ of p is determinantal with matrices of size $d \times d$,

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(x_1A_1 + \cdots + x_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$. Theorem (Scott and Sokal, 2014) Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{d-1}{2}$. Then the function

 $\mathbf{x} \in \mathcal{C} \mapsto p(\mathbf{x})^{-lpha} = \det(x_1A_1 + \cdots + x_nA_n)^{-lpha}$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then $p^{-\alpha}$ is CM only for α in the above range. Corollary If p is a hyperbolic polynomial and some r-th power $p(\mathbf{x})^r = \det(x_1A_1 + \cdots + x_nA_n)$ of p is determinantal with matrices of size $d \times d$, then $p^{-r\alpha}$ is CM

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(x_1A_1 + \cdots + x_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$. Theorem (Scott and Sokal, 2014) Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{d-1}{2}$. Then the function

$$\mathbf{x} \in \mathcal{C} \mapsto p(\mathbf{x})^{-lpha} = \det(x_1A_1 + \cdots + x_nA_n)^{-lpha}$$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then $p^{-\alpha}$ is CM only for α in the above range. Corollary If p is a hyperbolic polynomial and some r-th power $p(\mathbf{x})^r = \det(x_1A_1 + \cdots + x_nA_n)$ of p is determinantal with matrices of size $d \times d$, then $p^{-r\alpha}$ is CM for α in the above range.

Let A_1, \ldots, A_n be $d \times d$ real symmetric matrices such that the matrix $a_1A_1 + \cdots + a_nA_n$ is positive definite for some $\mathbf{a} \in \mathbb{R}^n$. Then $\det(x_1A_1 + \cdots + x_nA_n)$ is hyperbolic w.r.t. (some) $\mathcal{C} \ni \mathbf{a}$. Theorem (Scott and Sokal, 2014) Let $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{d-1}{2}$. Then the function

 $\mathbf{x} \in \mathcal{C} \mapsto p(\mathbf{x})^{-\alpha} = \det(x_1A_1 + \cdots + x_nA_n)^{-\alpha}$

is CM. If A_1, \ldots, A_n span the space of $d \times d$ real symmetric matrices, then $p^{-\alpha}$ is CM only for α in the above range. Corollary If p is a hyperbolic polynomial and some r-th power $p(\mathbf{x})^r = \det(x_1A_1 + \cdots + x_nA_n)$ of p is determinantal with matrices of size $d \times d$, then $p^{-r\alpha}$ is CM for α in the above range.

 \rightsquigarrow Conjecture of Michałek et al. holds in this case!

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \dots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-\alpha}=(x_1+\cdots+x_n)^{-\alpha},$

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \dots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}_{>0}^n.$

 $E_{1,n}^{-\alpha} = (x_1 + \cdots + x_n)^{-\alpha}, \ E_{n,n}^{-\alpha} = (x_1 \dots x_n)^{-\alpha}$

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-\alpha} = (x_1 + \dots + x_n)^{-\alpha}$, $E_{n,n}^{-\alpha} = (x_1 \dots x_n)^{-\alpha}$ are CM for $\alpha \ge 0$.

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \dots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-lpha}=(x_1+\cdots+x_n)^{-lpha},\ E_{n,n}^{-lpha}=(x_1\ldots x_n)^{-lpha}$ are CM for $lpha\geq 0.$

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-lpha}=(x_1+\cdots+x_n)^{-lpha},\ E_{n,n}^{-lpha}=(x_1\ldots x_n)^{-lpha}$ are CM for $lpha\geq 0.$

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-lpha}=(x_1+\cdots+x_n)^{-lpha},\ E_{n,n}^{-lpha}=(x_1\ldots x_n)^{-lpha}$ are CM for $lpha\geq 0.$

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-\alpha} = (x_1 + \dots + x_n)^{-\alpha}$, $E_{n,n}^{-\alpha} = (x_1 \dots x_n)^{-\alpha}$ are CM for $\alpha \ge 0$.

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$ or $\alpha \ge (n-2)/2$.

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-\alpha} = (x_1 + \dots + x_n)^{-\alpha}$, $E_{n,n}^{-\alpha} = (x_1 \dots x_n)^{-\alpha}$ are CM for $\alpha \ge 0$.

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$ or $\alpha \ge (n-2)/2$.
• $E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^n \prod_{j \ne i} x_j\right)^{-\alpha}$ is CM

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-lpha}=(x_1+\cdots+x_n)^{-lpha},\ E_{n,n}^{-lpha}=(x_1\ldots x_n)^{-lpha}$ are CM for $lpha\geq 0.$

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$ or $\alpha \ge (n-2)/2$.
• $E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^n \prod_{j \ne i} x_j\right)^{-\alpha}$ is CM iff $\alpha = 0$

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-lpha}=(x_1+\cdots+x_n)^{-lpha},\ E_{n,n}^{-lpha}=(x_1\ldots x_n)^{-lpha}$ are CM for $lpha\geq 0.$

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$ or $\alpha \ge (n-2)/2$.
• $E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^n \prod_{j \ne i} x_j\right)^{-\alpha}$ is CM iff $\alpha = 0$ $\alpha \ge 1/2$.

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-lpha}=(x_1+\cdots+x_n)^{-lpha},\ E_{n,n}^{-lpha}=(x_1\ldots x_n)^{-lpha}$ are CM for $lpha\geq 0.$

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$ or $\alpha \ge (n-2)/2$.
• $E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^n \prod_{j \ne i} x_j\right)^{-\alpha}$ is CM iff $\alpha = 0$ $\alpha \ge 1/2$.

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-\alpha} = (x_1 + \dots + x_n)^{-\alpha}$, $E_{n,n}^{-\alpha} = (x_1 \dots x_n)^{-\alpha}$ are CM for $\alpha \ge 0$.

Theorem (Scott and Sokal, 2014)

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$ or $\alpha \ge (n-2)/2$.
• $E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^n \prod_{j \ne i} x_j\right)^{-\alpha}$ is CM iff $\alpha = 0$ $\alpha \ge 1/2$.

Conjecture (Scott and Sokal, 2014)

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-lpha}=(x_1+\cdots+x_n)^{-lpha},\ E_{n,n}^{-lpha}=(x_1\ldots x_n)^{-lpha}$ are CM for $lpha\geq 0.$

Theorem (Scott and Sokal, 2014)

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$ or $\alpha \ge (n-2)/2$.
• $E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^n \prod_{j \ne i} x_j\right)^{-\alpha}$ is CM iff $\alpha = 0$ $\alpha \ge 1/2$.

Conjecture (Scott and Sokal, 2014)

Let $2 \leq d \leq n$.

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-\alpha} = (x_1 + \dots + x_n)^{-\alpha}$, $E_{n,n}^{-\alpha} = (x_1 \dots x_n)^{-\alpha}$ are CM for $\alpha \ge 0$.

Theorem (Scott and Sokal, 2014)

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$ or $\alpha \ge (n-2)/2$.
• $E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^n \prod_{j \ne i} x_j\right)^{-\alpha}$ is CM iff $\alpha = 0$ $\alpha \ge 1/2$.

Conjecture (Scott and Sokal, 2014)

Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if

$$E_{d,n}(\mathbf{x}) = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \ldots x_{i_d}, \quad \mathbf{x} \in \mathbb{R}^n,$$

are hyperbolic w.r.t. some open convex cone $\mathcal{C} \supseteq \mathbb{R}^n_{>0}$.

 $E_{1,n}^{-lpha}=(x_1+\cdots+x_n)^{-lpha},\ E_{n,n}^{-lpha}=(x_1\ldots x_n)^{-lpha}$ are CM for $lpha\geq 0.$

Theorem (Scott and Sokal, 2014)

•
$$E_{2,n}^{-\alpha} = \left(\sum_{1=i < j \le n} x_i x_j\right)^{-\alpha}$$
 is CM iff $\alpha = 0$ or $\alpha \ge (n-2)/2$.
• $E_{n-1,n}^{-\alpha} = \left(\sum_{i=1}^n \prod_{j \ne i} x_j\right)^{-\alpha}$ is CM iff $\alpha = 0$ $\alpha \ge 1/2$.

Conjecture (Scott and Sokal, 2014)

Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$.

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$.

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$.

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds])

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone,

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$.
Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$
 If $E_{d,n}^{-\alpha}$ is CM,

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$.

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$. Signs of $\overline{\mathbf{x}}$ -derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$. Signs of $\overline{\mathbf{x}}$ -derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$.

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$. Signs of $\overline{\mathbf{x}}$ -derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$. By induction, $\alpha \ge \frac{(n-1)-(d-1)}{2} =$

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$. Signs of $\overline{\mathbf{x}}$ -derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$. By induction, $\alpha \ge \frac{(n-1)-(d-1)}{2} = \frac{n-d}{2}$.

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$. Signs of $\overline{\mathbf{x}}$ -derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$. By induction, $\alpha \geq \frac{(n-1)-(d-1)}{2} = \frac{n-d}{2}$.

K., Michalek and Sturmfels, 2019

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$\mathsf{E}_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n \mathsf{E}_{d-1,n-1}(\overline{\mathbf{x}}) + \mathsf{E}_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$. Signs of $\overline{\mathbf{x}}$ -derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$. By induction, $\alpha \geq \frac{(n-1)-(d-1)}{2} = \frac{n-d}{2}$.

K., Michalek and Sturmfels, 2019

There is $\alpha_{d,n} > 0$

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$. Signs of $\overline{\mathbf{x}}$ -derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$. By induction, $\alpha \geq \frac{(n-1)-(d-1)}{2} = \frac{n-d}{2}$.

K., Michalek and Sturmfels, 2019

There is $\alpha_{d,n} > 0$ such that $E_{d,n}^{-\alpha}$ is CM

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$. Signs of $\overline{\mathbf{x}}$ -derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$. By induction, $\alpha \geq \frac{(n-1)-(d-1)}{2} = \frac{n-d}{2}$.

K., Michalek and Sturmfels, 2019

There is $\alpha_{d,n} > 0$ such that $E_{d,n}^{-\alpha}$ is CM for all $\alpha \ge \alpha_{d,n}$.

Conjecture (Scott and Sokal, 2014) Let $2 \le d \le n$. Then $E_{d,n}^{-\alpha}$ is CM if and only if $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Theorem (K., Michalek, Sturmfels, 2019 [" \Rightarrow " holds]) If $E_{d,n}^{-\alpha}$, $d \ge 2$, is completely monotone, then $\alpha = 0$ or $\alpha \ge \frac{n-d}{2}$. Proof sketch: One can write for $\overline{\mathbf{x}} = (x_1, \dots, x_{n-1})$

$$E_{d,n}(\overline{\mathbf{x}}, x_n)^{-\alpha} = (x_n E_{d-1,n-1}(\overline{\mathbf{x}}) + E_{d,n-1}(\overline{\mathbf{x}}))^{-\alpha}$$

If $E_{d,n}^{-\alpha}$ is CM, then it is CM in $\overline{\mathbf{x}}$ for any fixed $x_n > 0$. Signs of $\overline{\mathbf{x}}$ -derivatives of $E_{d,n}^{-\alpha}$ and of $E_{d-1,n-1}^{-\alpha}$ are the same for sufficiently large $x_n > 0$. By induction, $\alpha \geq \frac{(n-1)-(d-1)}{2} = \frac{n-d}{2}$.

K., Michalek and Sturmfels, 2019

There is $\alpha_{d,n} > 0$ such that $E_{d,n}^{-\alpha}$ is CM for all $\alpha \ge \alpha_{d,n}$.

\rightsquigarrow Conjecture of Michalek et al. holds for all $E_{d,n}$!

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM on C.

• Holds for *p* with determinantal power *p*^{*r*} (Scott and Sokal)

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

- Holds for *p* with determinantal power *p^r* (Scott and Sokal)
- Holds for *E*_{*d*,*n*} (K., Michalek and Sturmfels)

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

- Holds for *p* with determinantal power *p*^{*r*} (Scott and Sokal)
- Holds for $E_{d,n}$ (K., Michalek and Sturmfels)
- Would be enough to prove (or disprove) for multi-affine polynomials

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

- Holds for *p* with determinantal power *p*^{*r*} (Scott and Sokal)
- Holds for $E_{d,n}$ (K., Michalek and Sturmfels)
- Would be enough to prove (or disprove) for multi-affine polynomials (follows from Grace–Walsh–Szegö theorem)

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM on C.

- Holds for p with determinantal power p^r (Scott and Sokal)
- Holds for $E_{d,n}$ (K., Michalek and Sturmfels)
- Would be enough to prove (or disprove) for multi-affine polynomials (follows from Grace–Walsh–Szegö theorem)

Brändén, 2011 :

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM on C.

- Holds for p with determinantal power p^r (Scott and Sokal)
- Holds for $E_{d,n}$ (K., Michalek and Sturmfels)
- Would be enough to prove (or disprove) for multi-affine polynomials (follows from Grace–Walsh–Szegö theorem)

Brändén, 2011: NO power p^r of the hyperbolic polynomial

$$p = x_1^2 x_2^2 + 4(x_1 + x_2 + x_3 + x_4)(x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)$$

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM on C.

- Holds for p with determinantal power p^r (Scott and Sokal)
- Holds for $E_{d,n}$ (K., Michalek and Sturmfels)
- Would be enough to prove (or disprove) for multi-affine polynomials (follows from Grace–Walsh–Szegö theorem)

Brändén, 2011: NO power p^r of the hyperbolic polynomial

$$\rho = x_1^2 x_2^2 + 4(x_1 + x_2 + x_3 + x_4)(x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)$$

can be determinantal.

Conj. (Michałek, Sturmfels, Uhler and Zwiernik, 2015)

Let p be a real homogeneous polynomial that is hyperbolic w.r.t. C. Then there is $\alpha = \alpha(p) > 0$ such that $p^{-\alpha}$ is CM on C.

- Holds for p with determinantal power p^r (Scott and Sokal)
- Holds for *E*_{*d*,*n*} (K., Michalek and Sturmfels)
- Would be enough to prove (or disprove) for multi-affine polynomials (follows from Grace–Walsh–Szegö theorem)

Brändén, 2011: NO power p^r of the hyperbolic polynomial

$$p = x_1^2 x_2^2 + 4(x_1 + x_2 + x_3 + x_4)(x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)$$

can be determinantal.

Open question: is $p^{-\alpha}$ **CM for some** $\alpha > 0$ **?**

Part II

 $\mathcal{H}_{d,n}$ - space of *n*-ary forms (homogeneous polynomials) of deg *d*.

 $\mathcal{H}_{d,n}$ - space of *n*-ary forms (homogeneous polynomials) of deg *d*. $\mathcal{C}_{d,n} \subset \mathcal{H}_{d,n}$ - open convex cone of forms positive on $\mathbb{R}^n \setminus \{0\}$.

 $\mathcal{H}_{d,n}$ - space of *n*-ary forms (homogeneous polynomials) of deg *d*. $\underbrace{\mathcal{C}_{d,n}}_{\mathcal{C},n} \subset \mathcal{H}_{d,n}$ - open convex cone of forms positive on $\mathbb{R}^n \setminus \{0\}$. $\overline{\mathcal{C}_{d,n}} \subset \mathcal{H}_{d,n}$ - closed convex cone of non-negative forms.

 $\mathcal{H}_{d,n}$ - space of *n*-ary forms (homogeneous polynomials) of deg *d*. $\frac{\mathcal{C}_{d,n}}{\mathcal{C}_{d,n}} \subset \mathcal{H}_{d,n}$ - open convex cone of forms positive on $\mathbb{R}^n \setminus \{0\}$. $\overline{\mathcal{C}_{d,n}} \subset \mathcal{H}_{d,n}$ - closed convex cone of non-negative forms. Bombieri product:

 $\begin{array}{l} \mathcal{H}_{d,n} \text{ - space of } n\text{-ary forms (homogeneous polynomials) of deg } d. \\ \hline \mathcal{C}_{d,n} \subset \mathcal{H}_{d,n} \text{ - open convex cone of forms positive on } \mathbb{R}^n \setminus \{0\}. \\ \hline \mathcal{C}_{d,n} \subset \mathcal{H}_{d,n} \text{ - closed convex cone of non-negative forms.} \\ \hline \text{Bombieri product: } g = \sum_{|\alpha|=d} g_{\alpha} \mathbf{x}^{\alpha}, \ h = \sum_{|\alpha|=d} h_{\alpha} \mathbf{x}^{\alpha} \end{array}$

$$\langle g,h\rangle = \sum_{|\alpha|=d} {\binom{d}{\alpha}}^{-1} g_{\alpha} h_{\alpha}$$

 $\begin{array}{l} \mathcal{H}_{d,n} \text{ - space of } n\text{-ary forms (homogeneous polynomials) of deg } d. \\ \hline \mathcal{C}_{d,n} \subset \mathcal{H}_{d,n} \text{ - open convex cone of forms positive on } \mathbb{R}^n \setminus \{0\}. \\ \hline \mathcal{C}_{d,n} \subset \mathcal{H}_{d,n} \text{ - closed convex cone of non-negative forms.} \\ \hline \text{Bombieri product: } g = \sum_{|\alpha|=d} g_{\alpha} \mathbf{x}^{\alpha}, \ h = \sum_{|\alpha|=d} h_{\alpha} \mathbf{x}^{\alpha} \end{array}$

$$\langle g,h\rangle = \sum_{|\alpha|=d} {d \choose \alpha}^{-1} g_{\alpha} h_{\alpha}$$

The dual cone to $C_{d,n}$ (the moment cone):

 $\begin{array}{l} \mathcal{H}_{d,n} \text{ - space of } n\text{-ary forms (homogeneous polynomials) of deg } d. \\ \hline \mathcal{C}_{d,n} \subset \mathcal{H}_{d,n} \text{ - open convex cone of forms positive on } \mathbb{R}^n \setminus \{0\}. \\ \hline \mathcal{C}_{d,n} \subset \mathcal{H}_{d,n} \text{ - closed convex cone of non-negative forms.} \\ \hline \text{Bombieri product: } g = \sum_{|\alpha|=d} g_{\alpha} \mathbf{x}^{\alpha}, \ h = \sum_{|\alpha|=d} h_{\alpha} \mathbf{x}^{\alpha} \end{array}$

$$\langle g,h\rangle = \sum_{|\alpha|=d} {d \choose \alpha}^{-1} g_{\alpha} h_{\alpha}$$

The dual cone to $C_{d,n}$ (the moment cone):

$$\mathcal{C}_{d,n}^* = \left\{ \theta \in \mathcal{H}_{d,n} \, : \, \langle \theta, \mathcal{C}_{d,n} \rangle \geq 0 \right\} = \operatorname{conv} \left\{ \left(\ell^{\mathsf{T}} \cdot \right)^d \, : \, \ell \in \mathbb{R}^n \right\}.$$

 $\begin{array}{l} \mathcal{H}_{d,n} \text{ - space of } n\text{-ary forms (homogeneous polynomials) of deg } d. \\ \hline \mathcal{C}_{d,n} \subset \mathcal{H}_{d,n} \text{ - open convex cone of forms positive on } \mathbb{R}^n \setminus \{0\}. \\ \hline \mathcal{C}_{d,n} \subset \mathcal{H}_{d,n} \text{ - closed convex cone of non-negative forms.} \\ \hline \text{Bombieri product: } g = \sum_{|\alpha|=d} g_{\alpha} \mathbf{x}^{\alpha}, \ h = \sum_{|\alpha|=d} h_{\alpha} \mathbf{x}^{\alpha} \end{array}$

$$\langle g,h\rangle = \sum_{|\alpha|=d} {d \choose \alpha}^{-1} g_{\alpha} h_{\alpha}$$

The dual cone to $C_{d,n}$ (the moment cone):

$$\mathcal{C}^*_{d,n} \ = \ \left\{ \theta \in \mathcal{H}_{d,n} \ : \ \left\langle \theta, \mathcal{C}_{d,n} \right\rangle \geq 0 \right\} \ = \ \operatorname{conv} \left\{ \left(\ell^\mathsf{T} \cdot \right)^d \ : \ \ell \in \mathbb{R}^n \right\}.$$

 $\Sigma_{d,n} \subseteq \overline{\mathcal{C}_{d,n}}$ - closed convex cone of sums of squares.

Theorem (Hilbert, 1888)

Theorem (Hilbert, 1888) $\Sigma_{d,n} = \overline{C_{d,n}}$

Theorem (Hilbert, 1888) $\Sigma_{d,n} = \overline{C_{d,n}}$ if and only if d = 2, n = 2 or (d, n) = (4, 3).
Theorem (Hilbert, 1888) $\Sigma_{d,n} = \overline{C_{d,n}}$ if and only if d = 2, n = 2 or (d, n) = (4, 3). Testing membership in $\overline{C_{d,n}}$ is in general NP-hard $(d \ge 4)$.

Theorem (Hilbert, 1888)

$$\Sigma_{d,n} = \overline{\mathcal{C}_{d,n}}$$
 if and only if $d = 2$, $n = 2$ or $(d, n) = (4, 3)$.

Testing membership in $\overline{\mathcal{C}_{d,n}}$ is in general NP-hard $(d \ge 4)$. Checking whether or not a given $f \in \mathcal{H}_{d,n}$ lies in $\Sigma_{d,n}$ is equivalent to testing feasibility of a semidefinite program.

Theorem (Hilbert, 1888)

$$\Sigma_{d,n} = \overline{\mathcal{C}_{d,n}}$$
 if and only if $d = 2$, $n = 2$ or $(d, n) = (4, 3)$.

Testing membership in $\overline{C_{d,n}}$ is in general NP-hard $(d \ge 4)$. Checking whether or not a given $f \in \mathcal{H}_{d,n}$ lies in $\Sigma_{d,n}$ is equivalent to testing feasibility of a semidefinite program.

Remark In fact, $\Sigma_{d,n}$ is the image under a linear map of the cone of positive semidefinite matrices (PSD cone) of size $\binom{d/2}{n-1} \times \binom{d/2}{n-1}$.

Theorem (Hilbert, 1888)

$$\Sigma_{d,n} = \overline{\mathcal{C}_{d,n}}$$
 if and only if $d = 2$, $n = 2$ or $(d, n) = (4, 3)$.

Testing membership in $\overline{\mathcal{C}_{d,n}}$ is in general NP-hard $(d \ge 4)$. Checking whether or not a given $f \in \mathcal{H}_{d,n}$ lies in $\Sigma_{d,n}$ is equivalent to testing feasibility of a semidefinite program.

Remark In fact, $\Sigma_{d,n}$ is the image under a linear map of the cone of positive semidefinite matrices (PSD cone) of size $\binom{d/2}{n-1} \times \binom{d/2}{n-1}$.

Theorem (Scheiderer, 2018)

Theorem (Hilbert, 1888)

$$\Sigma_{d,n} = \overline{\mathcal{C}_{d,n}}$$
 if and only if $d = 2$, $n = 2$ or $(d, n) = (4, 3)$.

Testing membership in $\overline{\mathcal{C}_{d,n}}$ is in general NP-hard $(d \ge 4)$. Checking whether or not a given $f \in \mathcal{H}_{d,n}$ lies in $\Sigma_{d,n}$ is equivalent to testing feasibility of a semidefinite program.

Remark In fact, $\Sigma_{d,n}$ is the image under a linear map of the cone of positive semidefinite matrices (PSD cone) of size $\binom{d/2}{n-1} \times \binom{d/2}{n-1}$.

Theorem (Scheiderer, 2018)

In general, $\overline{C_{d,n}}$ is not linear image of the PSD cone of some size.

Theorem (Hilbert, 1888)

$$\Sigma_{d,n} = \overline{\mathcal{C}_{d,n}}$$
 if and only if $d = 2$, $n = 2$ or $(d, n) = (4, 3)$.

Testing membership in $\overline{\mathcal{C}_{d,n}}$ is in general NP-hard $(d \ge 4)$. Checking whether or not a given $f \in \mathcal{H}_{d,n}$ lies in $\Sigma_{d,n}$ is equivalent to testing feasibility of a semidefinite program.

Remark In fact, $\Sigma_{d,n}$ is the image under a linear map of the cone of positive semidefinite matrices (PSD cone) of size $\binom{d/2}{n-1} \times \binom{d/2}{n-1}$.

Theorem (Scheiderer, 2018)

In general, $\overline{C_{d,n}}$ is not linear image of the PSD cone of some size.

 $\Rightarrow \overline{\mathcal{C}_{d,n}}$ is a complicated cone!

Theorem (Hilbert, 1888)

$$\Sigma_{d,n} = \overline{\mathcal{C}_{d,n}}$$
 if and only if $d = 2$, $n = 2$ or $(d, n) = (4, 3)$.

Testing membership in $\overline{C_{d,n}}$ is in general NP-hard $(d \ge 4)$. Checking whether or not a given $f \in \mathcal{H}_{d,n}$ lies in $\Sigma_{d,n}$ is equivalent to testing feasibility of a semidefinite program.

Remark In fact, $\Sigma_{d,n}$ is the image under a linear map of the cone of positive semidefinite matrices (PSD cone) of size $\binom{d/2}{n-1} \times \binom{d/2}{n-1}$.

Theorem (Scheiderer, 2018)

In general, $\overline{C_{d,n}}$ is not linear image of the PSD cone of some size.

 $\Rightarrow \overline{\mathcal{C}_{d,n}}$ is a complicated cone!

Idea: Study "natural" functions on $\overline{C_{d,n}}$ with the hope of understanding it better.

The sublevel set of $g \in \mathcal{H}_{d,n}$:

The sublevel set of $g \in \mathcal{H}_{d,n}$: $\mathcal{G} := \{ \mathbf{x} \in \mathbb{R}^n \, : \, g(\mathbf{x}) \leq 1 \}.$

The sublevel set of $g \in \mathcal{H}_{d,n}$: $\mathcal{G} := \{ \mathbf{x} \in \mathbb{R}^n \, : \, g(\mathbf{x}) \leq 1 \}.$

Positive definite

The sublevel set of $g \in \mathcal{H}_{d,n}$: $\mathcal{G} := \{ \mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \leq 1 \}.$

Positive definite

Non-negative, not PD

The sublevel set of $g \in \mathcal{H}_{d,n}$: $\mathcal{G} := \{ \mathbf{x} \in \mathbb{R}^n \, : \, g(\mathbf{x}) \leq 1 \}.$

Positive definite

Non-negative, not PD

Not non-negative

The sublevel set of $g \in \mathcal{H}_{d,n}$: $\mathcal{G} := \{ \mathbf{x} \in \mathbb{R}^n \, : \, g(\mathbf{x}) \leq 1 \}.$

Positive definite

Non-negative, not PD

Not non-negative

The Lebesgue volume of \mathcal{G} is finite $\Rightarrow g \in \overline{\mathcal{C}_{d,n}}$ (g is non-negative).

The sublevel set of $g \in \mathcal{H}_{d,n}$: $\mathcal{G} := \{ \mathbf{x} \in \mathbb{R}^n \, : \, g(\mathbf{x}) \leq 1 \}.$

Positive definite

Non-negative, not PD

The Lebesgue volume of \mathcal{G} is finite $\Rightarrow g \in \overline{\mathcal{C}_{d,n}}$ (g is non-negative). If $g \in \mathcal{C}_{d,n}$ is positive definite,

The sublevel set of $g \in \mathcal{H}_{d,n}$: $\mathcal{G} := \{ \mathbf{x} \in \mathbb{R}^n \, : \, g(\mathbf{x}) \leq 1 \}.$

Positive definite

Non-negative, not PD

Not non-negative

The Lebesgue volume of \mathcal{G} is finite $\Rightarrow g \in \overline{\mathcal{C}_{d,n}}$ (g is non-negative).

If $g \in C_{d,n}$ is positive definite, \mathcal{G} is a compact subset of \mathbb{R}^n with non-empty interior and hence it has finite Lebesgue volume.

The sublevel set of $g \in \mathcal{H}_{d,n}$: $\mathcal{G} := \{ \mathbf{x} \in \mathbb{R}^n \, : \, g(\mathbf{x}) \leq 1 \}.$

Positive definite

Non-negative, not PD

Not non-negative

The Lebesgue volume of \mathcal{G} is finite $\Rightarrow g \in \overline{\mathcal{C}_{d,n}}$ (g is non-negative).

If $g \in C_{d,n}$ is positive definite, \mathcal{G} is a compact subset of \mathbb{R}^n with non-empty interior and hence it has finite Lebesgue volume.

 $\begin{aligned} \mathcal{C}_{d,n} &= \{g \in \mathcal{H}_{d,n} : g(\mathbf{x}) > 0, \ \mathbf{x} \in \mathbb{R}^n \setminus \{0\}\} \text{ - the open convex} \\ \text{cone of positive definite forms.} \qquad \mathcal{G} &= \{\mathbf{x} \in \mathbb{R}^n \, : \, g(\mathbf{x}) \leq 1\} \end{aligned}$

 $\begin{aligned} \mathcal{C}_{d,n} &= \{g \in \mathcal{H}_{d,n} : g(\mathbf{x}) > 0, \ \mathbf{x} \in \mathbb{R}^n \setminus \{0\}\} \text{ - the open convex} \\ \text{cone of positive definite forms.} \qquad \mathcal{G} &= \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \leq 1\} \\ \text{The volume function:} \end{aligned}$

$$egin{array}{rcl} f:\mathcal{C}_{d,n}&
ightarrow&\mathbb{R},\ &g&\mapsto&\mathrm{vol}(\mathcal{G})\ =\ \int_{\mathcal{G}}\mathrm{d}\mathbf{x}\ =\ rac{1}{\Gamma(1+n/d)}\int_{\mathbb{R}^n}\exp(-g(\mathbf{x}))\,\mathrm{d}\mathbf{x} \end{array}$$

 $\begin{aligned} \mathcal{C}_{d,n} &= \{g \in \mathcal{H}_{d,n} : g(\mathbf{x}) > 0, \ \mathbf{x} \in \mathbb{R}^n \setminus \{0\}\} \text{ - the open convex} \\ \text{cone of positive definite forms.} \qquad \mathcal{G} &= \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \leq 1\} \\ \text{The volume function:} \end{aligned}$

$$\begin{array}{rcl} f:\mathcal{C}_{d,n} \ \to \ \mathbb{R}, \\ g \ \mapsto \ \mathrm{vol}(\mathcal{G}) \ = \ \int_{\mathcal{G}} \mathrm{d} \mathbf{x} \ = \ \frac{1}{\Gamma(1+n/d)} \int_{\mathbb{R}^n} \exp(-g(\mathbf{x})) \, \mathrm{d} \mathbf{x} \end{array}$$

Lasserre, 2016: the non-negative function f is strictly convex.

 $\begin{aligned} \mathcal{C}_{d,n} &= \{g \in \mathcal{H}_{d,n} : g(\mathbf{x}) > 0, \ \mathbf{x} \in \mathbb{R}^n \setminus \{0\}\} \text{ - the open convex} \\ \text{cone of positive definite forms.} \qquad \mathcal{G} &= \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \leq 1\} \\ \text{The volume function:} \end{aligned}$

$$egin{array}{rcl} f:\mathcal{C}_{d,n}&
ightarrow \ \mathbb{R}, \ &g&\mapsto&\mathrm{vol}(\mathcal{G})\ =\ \int_{\mathcal{G}}\mathrm{d}\mathbf{x}\ =\ rac{1}{\Gamma(1+n/d)}\int_{\mathbb{R}^n}\exp(-g(\mathbf{x}))\,\mathrm{d}\mathbf{x} \end{array}$$

Lasserre, 2016: the non-negative function f is strictly convex. K. and Lasserre, 2020: $b_{d,n} := (x_1^2 + \dots + x_n^2)^{d/2}$ is the unique minimum of f among all $g \in \mathcal{H}_{d,n}$ with $\|g\| = \sqrt{\langle g, g \rangle} = \|b_{d,n}\|$.

 $\begin{aligned} \mathcal{C}_{d,n} &= \{g \in \mathcal{H}_{d,n} : g(\mathbf{x}) > 0, \ \mathbf{x} \in \mathbb{R}^n \setminus \{0\}\} \text{ - the open convex} \\ \text{cone of positive definite forms.} \qquad \mathcal{G} &= \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \leq 1\} \\ \text{The volume function:} \end{aligned}$

$$egin{array}{rcl} f:\mathcal{C}_{d,n}&
ightarrow \ \mathbb{R}, \ &g&\mapsto&\mathrm{vol}(\mathcal{G})\ =\ \int_{\mathcal{G}}\mathrm{d}\mathbf{x}\ =\ rac{1}{\Gamma(1+n/d)}\int_{\mathbb{R}^n}\exp(-g(\mathbf{x}))\,\mathrm{d}\mathbf{x} \end{array}$$

Lasserre, 2016: the non-negative function f is strictly convex. K. and Lasserre, 2020: $b_{d,n} := (x_1^2 + \dots + x_n^2)^{d/2}$ is the unique minimum of f among all $g \in \mathcal{H}_{d,n}$ with $\|g\| = \sqrt{\langle g, g \rangle} = \|b_{d,n}\|$.

 $\begin{aligned} \mathcal{C}_{d,n} &= \{g \in \mathcal{H}_{d,n} : g(\mathbf{x}) > 0, \ \mathbf{x} \in \mathbb{R}^n \setminus \{0\}\} \text{ - the open convex} \\ \text{cone of positive definite forms.} \qquad \mathcal{G} &= \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \leq 1\} \\ \text{The volume function:} \end{aligned}$

$$egin{array}{rcl} f:\mathcal{C}_{d,n}&
ightarrow \ \mathbb{R}, \ &g&\mapsto&\mathrm{vol}(\mathcal{G})\ =\ \int_{\mathcal{G}}\mathrm{d}\mathbf{x}\ =\ rac{1}{\Gamma(1+n/d)}\int_{\mathbb{R}^n}\exp(-g(\mathbf{x}))\,\mathrm{d}\mathbf{x} \end{array}$$

Lasserre, 2016: the non-negative function f is strictly convex. K. and Lasserre, 2020: $b_{d,n} := (x_1^2 + \dots + x_n^2)^{d/2}$ is the unique minimum of f among all $g \in \mathcal{H}_{d,n}$ with $\|g\| = \sqrt{\langle g, g \rangle} = \|b_{d,n}\|$.

In other words,

 $\begin{aligned} \mathcal{C}_{d,n} &= \{g \in \mathcal{H}_{d,n} : g(\mathbf{x}) > 0, \ \mathbf{x} \in \mathbb{R}^n \setminus \{0\}\} \text{ - the open convex} \\ \text{cone of positive definite forms.} \qquad \mathcal{G} &= \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \leq 1\} \\ \text{The volume function:} \end{aligned}$

$$egin{array}{rcl} f:\mathcal{C}_{d,n}&
ightarrow&\mathbb{R},\ &g&\mapsto&\mathrm{vol}(\mathcal{G})\ =\ \int_{\mathcal{G}}\mathrm{d}\mathbf{x}\ =\ rac{1}{\Gamma(1+n/d)}\int_{\mathbb{R}^n}\exp(-g(\mathbf{x}))\,\mathrm{d}\mathbf{x} \end{array}$$

Lasserre, 2016: the non-negative function f is strictly convex. K. and Lasserre, 2020: $b_{d,n} := (x_1^2 + \dots + x_n^2)^{d/2}$ is the unique minimum of f among all $g \in \mathcal{H}_{d,n}$ with $\|g\| = \sqrt{\langle g, g \rangle} = \|b_{d,n}\|$.

In other words, the Euclidean ball $\{x_1^2 + \cdots + x_n^2 \le 1\}$ has the smallest Lebesgue volume

 $\begin{aligned} \mathcal{C}_{d,n} &= \{g \in \mathcal{H}_{d,n} : g(\mathbf{x}) > 0, \ \mathbf{x} \in \mathbb{R}^n \setminus \{0\}\} \text{ - the open convex} \\ \text{cone of positive definite forms.} \qquad \mathcal{G} &= \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \leq 1\} \\ \text{The volume function:} \end{aligned}$

$$egin{array}{rcl} f:\mathcal{C}_{d,n}&
ightarrow&\mathbb{R},\ &g&\mapsto&\mathrm{vol}(\mathcal{G})\ =\ \int_{\mathcal{G}}\mathrm{d}\mathbf{x}\ =\ rac{1}{\Gamma(1+n/d)}\int_{\mathbb{R}^n}\exp(-g(\mathbf{x}))\,\mathrm{d}\mathbf{x} \end{array}$$

Lasserre, 2016: the non-negative function f is strictly convex. K. and Lasserre, 2020: $b_{d,n} := (x_1^2 + \dots + x_n^2)^{d/2}$ is the unique minimum of f among all $g \in \mathcal{H}_{d,n}$ with $\|g\| = \sqrt{\langle g, g \rangle} = \|b_{d,n}\|$.

In other words, the Euclidean ball $\{x_1^2 + \cdots + x_n^2 \leq 1\}$ has the smallest Lebesgue volume among sublevel sets \mathcal{G} of all forms $g \in \mathcal{H}_{d,n}$ with $\|g\| = \|b_{d,n}\|$.

Complete monotonicity of vol

K. and Lasserre, 2023

K. and Lasserre, 2023

The function $f(g) = vol(\mathcal{G})$ is completely monotone on $\mathcal{C}_{d,n}$

K. and Lasserre, 2023

The function f(g) = vol(G) is completely monotone on $C_{d,n}$ and

$$f(g) = \int_{\mathcal{C}^*_{d,n}} \exp(-\langle \theta, g \rangle) \frac{\mathrm{d}\mu(\theta)}{\Gamma(1+n/d)},$$

K. and Lasserre, 2023

The function f(g) = vol(G) is completely monotone on $C_{d,n}$ and

$$f(g) = \int_{\mathcal{C}^*_{d,n}} \exp(-\langle \theta, g \rangle) \frac{\mathrm{d}\mu(\theta)}{\Gamma(1+n/d)},$$

where μ is the push-forward of the Lebesgue measure on \mathbb{R}^n under the Veronese map $\ell \mapsto \theta_\ell := (\ell^T \cdot)^d$.

K. and Lasserre, 2023

The function f(g) = vol(G) is completely monotone on $C_{d,n}$ and

$$f(g) = \int_{\mathcal{C}^*_{d,n}} \exp(-\langle \theta, g \rangle) \frac{\mathrm{d}\mu(\theta)}{\Gamma(1+n/d)},$$

where μ is the push-forward of the Lebesgue measure on \mathbb{R}^n under the Veronese map $\ell \mapsto \theta_\ell := (\ell^T \cdot)^d$.

d=2 :

K. and Lasserre, 2023

The function f(g) = vol(G) is completely monotone on $C_{d,n}$ and

$$f(g) = \int_{\mathcal{C}^*_{d,n}} \exp(-\langle \theta, g \rangle) \frac{\mathrm{d}\mu(\theta)}{\Gamma(1+n/d)},$$

where μ is the push-forward of the Lebesgue measure on \mathbb{R}^n under the Veronese map $\ell \mapsto \theta_\ell := (\ell^T \cdot)^d$.

$$\underline{\mathsf{d}=2}: \ f(g) = \frac{\sqrt{\pi}^n}{\Gamma(1+n/2)} \det(G)^{-1/2}$$

K. and Lasserre, 2023

The function f(g) = vol(G) is completely monotone on $C_{d,n}$ and

$$f(g) = \int_{\mathcal{C}_{d,n}^*} \exp(-\langle \theta, g \rangle) \frac{\mathrm{d}\mu(\theta)}{\Gamma(1+n/d)},$$

where μ is the push-forward of the Lebesgue measure on \mathbb{R}^n under the Veronese map $\ell \mapsto \theta_\ell := (\ell^T \cdot)^d$.

$$\underline{\mathsf{d}}{=}2]: \ f(g) = \frac{\sqrt{\pi}^n}{\Gamma(1+n/2)} \det(G)^{-1/2} \ \text{ for } g = \mathbf{x}^\mathsf{T} G \mathbf{x} \in \mathcal{C}_{2,n}.$$

K. and Lasserre, 2023

The function f(g) = vol(G) is completely monotone on $C_{d,n}$ and

$$f(g) = \int_{\mathcal{C}^*_{d,n}} \exp(-\langle \theta, g \rangle) \frac{\mathrm{d}\mu(\theta)}{\Gamma(1+n/d)},$$

where μ is the push-forward of the Lebesgue measure on \mathbb{R}^n under the Veronese map $\ell \mapsto \theta_\ell := (\ell^T \cdot)^d$.

$$\boxed{\mathsf{d}{=}2}: \ f(g) = \frac{\sqrt{\pi}^n}{\Gamma(1+n/2)} \det(G)^{-1/2} \ \text{ for } g = \mathbf{x}^\mathsf{T} G \mathbf{x} \in \mathcal{C}_{2,n}.$$

 $\Rightarrow~$ for quadratic forms our result also follows from

K. and Lasserre, 2023

The function f(g) = vol(G) is completely monotone on $C_{d,n}$ and

$$f(g) = \int_{\mathcal{C}^*_{d,n}} \exp(-\langle \theta, g \rangle) \frac{\mathrm{d}\mu(\theta)}{\Gamma(1+n/d)},$$

where μ is the push-forward of the Lebesgue measure on \mathbb{R}^n under the Veronese map $\ell \mapsto \theta_\ell := (\ell^T \cdot)^d$.

d=2:
$$f(g) = \frac{\sqrt{\pi^n}}{\Gamma(1+n/2)} \det(G)^{-1/2}$$
 for $g = \mathbf{x}^\mathsf{T} G \mathbf{x} \in \mathcal{C}_{2,n}$.

 \Rightarrow for quadratic forms our result also follows from

Theorem (Scott and Sokal, 2014)

The function $G \mapsto \det(G)^{-\alpha}$ on the cone of $n \times n$ positive definite matrices is CM iff $\alpha = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ or $\alpha \ge \frac{n-1}{2}$.
Behaviour of vol on the boundary of $C_{d,n}$ A function $\varphi : C \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier,

Behaviour of vol on the boundary of $\mathcal{C}_{d,n}$ A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$.

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957:

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}}\mathfrak{g}) d\mathfrak{g}$

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier.

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996:

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^{\mathsf{T}}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996: $\log \varphi$ is a universal barrier function

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^\mathsf{T}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996: $\log \varphi$ is a universal barrier function (used in interior point methods for solving convex optimization problems).

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^\mathsf{T}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996: $\log \varphi$ is a universal barrier function (used in interior point methods for solving convex optimization problems).

Question

Is the volume function $f(g) = \frac{1}{\Gamma(1+n/d)} \int_{\mathcal{C}_{d,n}^*} \exp(-\langle \theta, g \rangle) d\mu(g)$ a barrier for $\mathcal{C}_{d,n}$? Is it true that $\operatorname{vol}(\mathcal{G}) = \infty$ for $g \in \partial \mathcal{C}_{d,n}$?

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^\mathsf{T}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996: $\log \varphi$ is a universal barrier function (used in interior point methods for solving convex optimization problems).

Question

Is the volume function $f(g) = \frac{1}{\Gamma(1+n/d)} \int_{\mathcal{C}_{d,n}^*} \exp(-\langle \theta, g \rangle) d\mu(g)$ a barrier for $\mathcal{C}_{d,n}$? Is it true that $\operatorname{vol}(\mathcal{G}) = \infty$ for $g \in \partial \mathcal{C}_{d,n}$?

d = 2: $g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} G \mathbf{x}$ has finite $\operatorname{vol}(\mathcal{G})$ iff G is PD.

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^\mathsf{T}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996: $\log \varphi$ is a universal barrier function (used in interior point methods for solving convex optimization problems).

Question

Is the volume function $f(g) = \frac{1}{\Gamma(1+n/d)} \int_{\mathcal{C}_{d,n}^*} \exp(-\langle \theta, g \rangle) d\mu(g)$ a barrier for $\mathcal{C}_{d,n}$? Is it true that $\operatorname{vol}(\mathcal{G}) = \infty$ for $g \in \partial \mathcal{C}_{d,n}$?

d = 2: $g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} G \mathbf{x}$ has finite $\operatorname{vol}(\mathcal{G})$ iff G is PD.

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^\mathsf{T}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996: $\log \varphi$ is a universal barrier function (used in interior point methods for solving convex optimization problems).

Question

- Is the volume function $f(g) = \frac{1}{\Gamma(1+n/d)} \int_{\mathcal{C}_{d,n}^*} \exp(-\langle \theta, g \rangle) d\mu(g)$ a barrier for $\mathcal{C}_{d,n}$? Is it true that $\operatorname{vol}(\mathcal{G}) = \infty$ for $g \in \partial \mathcal{C}_{d,n}$?
- d=2: $g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} G \mathbf{x}$ has finite $\operatorname{vol}(\mathcal{G})$ iff G is PD.

A non-negative $g \in \overline{\mathcal{C}_{d,n}}$ is called generic,

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^\mathsf{T}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996: $\log \varphi$ is a universal barrier function (used in interior point methods for solving convex optimization problems).

Question

Is the volume function $f(g) = \frac{1}{\Gamma(1+n/d)} \int_{\mathcal{C}_{d,n}^*} \exp(-\langle \theta, g \rangle) d\mu(g)$ a barrier for $\mathcal{C}_{d,n}$? Is it true that $\operatorname{vol}(\mathcal{G}) = \infty$ for $g \in \partial \mathcal{C}_{d,n}$?

d=2: $g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} G \mathbf{x}$ has finite $\operatorname{vol}(\mathcal{G})$ iff G is PD.

A non-negative $g \in \overline{\mathcal{C}_{d,n}}$ is called generic, if at every its real zero $\mathbf{x} \in \mathbb{R}^n \setminus \{0\}$

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^\mathsf{T}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996: $\log \varphi$ is a universal barrier function (used in interior point methods for solving convex optimization problems).

Question

Is the volume function $f(g) = \frac{1}{\Gamma(1+n/d)} \int_{\mathcal{C}_{d,n}^*} \exp(-\langle \theta, g \rangle) d\mu(g)$ a barrier for $\mathcal{C}_{d,n}$? Is it true that $\operatorname{vol}(\mathcal{G}) = \infty$ for $g \in \partial \mathcal{C}_{d,n}$?

d=2: $g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} G \mathbf{x}$ has finite $\operatorname{vol}(\mathcal{G})$ iff G is PD.

A non-negative $g \in \overline{\mathcal{C}_{d,n}}$ is called generic, if at every its real zero $\mathbf{x} \in \mathbb{R}^n \setminus \{0\}$ the Hessian $\left(\frac{\partial^2 g}{\partial x_i \partial x_j}(\mathbf{x})\right)$ has rank n-1.

A function $\varphi : \mathcal{C} \subset \mathbb{R}^N \to \mathbb{R}$ is a barrier, if $\varphi(\mathfrak{g}) \to +\infty$ as $\mathfrak{g} \to \partial \mathcal{C}$. Koecher, 1957: $\varphi(\mathfrak{g}) = \int_{\mathcal{C}^*} \exp(-\theta^\mathsf{T}\mathfrak{g}) d\mathfrak{g}$ is a (log-convex) barrier. Güler, 1996: $\log \varphi$ is a universal barrier function (used in interior point methods for solving convex optimization problems).

Question

Is the volume function $f(g) = \frac{1}{\Gamma(1+n/d)} \int_{\mathcal{C}_{d,n}^*} \exp(-\langle \theta, g \rangle) d\mu(g)$ a barrier for $\mathcal{C}_{d,n}$? Is it true that $\operatorname{vol}(\mathcal{G}) = \infty$ for $g \in \partial \mathcal{C}_{d,n}$?

d = 2: $g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} G \mathbf{x}$ has finite $\operatorname{vol}(\mathcal{G})$ iff G is PD.

A non-negative $g \in \overline{\mathcal{C}_{d,n}}$ is called generic, if at every its real zero $\mathbf{x} \in \mathbb{R}^n \setminus \{0\}$ the Hessian $\left(\frac{\partial^2 g}{\partial x_i \partial x_j}(\mathbf{x})\right)$ has rank n-1.

Theorem (K. and Lasserre, 2023) For even $d \ge 4$ any generic form $g \in \overline{C_{d,n}}$ has finite vol(\mathcal{G}).

Full characterization for n = 2

Theorem (K. and Lasserre, 2023) Let $g \in \overline{C_{d,2}}$. Then vol(\mathcal{G}) is finite iff the multiplicity of each real zero of g is at most d/2 - 1.

Full characterization for n = 2

Theorem (K. and Lasserre, 2023) Let $g \in \overline{C_{d,2}}$. Then vol(\mathcal{G}) is finite iff the multiplicity of each real zero of g is at most d/2 - 1.

d = 6, 3 zeros of multiplicity 2, finite volume

Full characterization for n = 2

Theorem (K. and Lasserre, 2023) Let $g \in \overline{C_{d,2}}$. Then vol(\mathcal{G}) is finite iff the multiplicity of each real zero of g is at most d/2 - 1.

d = 6, 3 zeros of multiplicity 2, finite volume

d = 8, 2 zeros of multiplicity 2, 1 - of multiplicity 4, infinite volume

For $n \geq 3$ and even $d \geq 4$,

For $n \ge 3$ and even $d \ge 4$, genericity of $g \in \overline{\mathcal{C}_{d,n}}$ is only a sufficient condition for finiteness of $f(g) = \operatorname{vol}(\mathcal{G})$.

For $n \ge 3$ and even $d \ge 4$, genericity of $g \in \overline{\mathcal{C}_{d,n}}$ is only a sufficient condition for finiteness of $f(g) = \operatorname{vol}(\mathcal{G})$.

Problem

For $n \ge 3$ and even $d \ge 4$, genericity of $g \in \overline{C_{d,n}}$ is only a sufficient condition for finiteness of $f(g) = \operatorname{vol}(\mathcal{G})$.

Problem

Let $g \in \overline{\mathcal{C}_{d,n}}$ be a non-negative form with isolated real zeros in $\mathbb{R}\mathbf{P}^{n-1}$.

For $n \ge 3$ and even $d \ge 4$, genericity of $g \in \overline{\mathcal{C}_{d,n}}$ is only a sufficient condition for finiteness of $f(g) = \operatorname{vol}(\mathcal{G})$.

Problem

Let $g \in \overline{\mathcal{C}_{d,n}}$ be a non-negative form with isolated real zeros in $\mathbb{R}\mathbf{P}^{n-1}$. Determine whether $\operatorname{vol}(\mathcal{G})$ is finite in terms of some conditions (e.g. singularity type) on real zeros of g.

For $n \ge 3$ and even $d \ge 4$, genericity of $g \in \overline{\mathcal{C}_{d,n}}$ is only a sufficient condition for finiteness of $f(g) = \operatorname{vol}(\mathcal{G})$.

Problem

Let $g \in \overline{\mathcal{C}_{d,n}}$ be a non-negative form with isolated real zeros in $\mathbb{R}\mathbf{P}^{n-1}$. Determine whether $\operatorname{vol}(\mathcal{G})$ is finite in terms of some conditions (e.g. singularity type) on real zeros of g.

Suppose that $g \in \overline{\mathcal{C}_{d,n}}$ has only isolated zeros in $\mathbb{R}\mathbf{P}^{n-1}$ that all lie in $\mathbb{R}^{n-1} \simeq \{\mathbf{x} \in \mathbb{R}\mathbf{P}^{n-1} : x_n \neq 0\}.$

For $n \ge 3$ and even $d \ge 4$, genericity of $g \in \overline{\mathcal{C}_{d,n}}$ is only a sufficient condition for finiteness of $f(g) = \operatorname{vol}(\mathcal{G})$.

Problem

Let $g \in \overline{\mathcal{C}_{d,n}}$ be a non-negative form with isolated real zeros in $\mathbb{R}\mathbf{P}^{n-1}$. Determine whether $\operatorname{vol}(\mathcal{G})$ is finite in terms of some conditions (e.g. singularity type) on real zeros of g.

Suppose that $g \in \overline{\mathcal{C}_{d,n}}$ has only isolated zeros in $\mathbb{R}\mathbf{P}^{n-1}$ that all lie in $\mathbb{R}^{n-1} \simeq \{\mathbf{x} \in \mathbb{R}\mathbf{P}^{n-1} : x_n \neq 0\}$. Denote by $\mathbf{y}_1, \ldots, \mathbf{y}_k \in \mathbb{R}^{n-1}$ the corresponding zeros of the dehomogenization $\tilde{g}(\mathbf{y}) = g(\mathbf{y}, 1)$.

For $n \ge 3$ and even $d \ge 4$, genericity of $g \in \overline{C_{d,n}}$ is only a sufficient condition for finiteness of $f(g) = \operatorname{vol}(\mathcal{G})$.

Problem

Let $g \in \overline{\mathcal{C}_{d,n}}$ be a non-negative form with isolated real zeros in $\mathbb{R}\mathbf{P}^{n-1}$. Determine whether $\operatorname{vol}(\mathcal{G})$ is finite in terms of some conditions (e.g. singularity type) on real zeros of g.

Suppose that $g \in \overline{\mathcal{C}_{d,n}}$ has only isolated zeros in $\mathbb{R}\mathbf{P}^{n-1}$ that all lie in $\mathbb{R}^{n-1} \simeq \{\mathbf{x} \in \mathbb{R}\mathbf{P}^{n-1} : x_n \neq 0\}$. Denote by $\mathbf{y}_1, \ldots, \mathbf{y}_k \in \mathbb{R}^{n-1}$ the corresponding zeros of the dehomogenization $\tilde{g}(\mathbf{y}) = g(\mathbf{y}, 1)$. Then $\operatorname{vol}(\mathcal{G}) < \infty$ iff integrals

$$\int_{U_j} rac{1}{ ilde{oldsymbol{g}}(\mathbf{y})^{n/d}} \, \mathbf{d}\mathbf{y}, \quad j=1,\ldots,k,$$

over (arbitrary) small neighborhoods of y_1, \ldots, y_k converge.

For a convex set $\mathcal{G} \subset \mathbb{R}^n$

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε),

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$.

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$. The coefficients $V_j(\mathcal{G})$

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$. The coefficients $V_j(\mathcal{G})$ are called intrinsic volumes of \mathcal{G} .
For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$. The coefficients $V_j(\mathcal{G})$ are called intrinsic volumes of \mathcal{G} . One has $V_n(\mathcal{G}) = \operatorname{vol}(\mathcal{G})$.

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$. The coefficients $V_j(\mathcal{G})$ are called intrinsic volumes of \mathcal{G} . One has $V_n(\mathcal{G}) = \operatorname{vol}(\mathcal{G})$.

Remark

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$. The coefficients $V_j(\mathcal{G})$ are called intrinsic volumes of \mathcal{G} . One has $V_n(\mathcal{G}) = \operatorname{vol}(\mathcal{G})$.

Remark Same expansion holds for subsets G with positive reach.

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$. The coefficients $V_j(\mathcal{G})$ are called intrinsic volumes of \mathcal{G} . One has $V_n(\mathcal{G}) = \operatorname{vol}(\mathcal{G})$.

Remark Same expansion holds for subsets \mathcal{G} with positive reach. Question :

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$. The coefficients $V_j(\mathcal{G})$ are called intrinsic volumes of \mathcal{G} . One has $V_n(\mathcal{G}) = \operatorname{vol}(\mathcal{G})$.

Remark Same expansion holds for subsets \mathcal{G} with positive reach.

Question: what can be said about the intrinsic volume function

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$. The coefficients $V_j(\mathcal{G})$ are called intrinsic volumes of \mathcal{G} . One has $V_n(\mathcal{G}) = \operatorname{vol}(\mathcal{G})$.

Remark Same expansion holds for subsets \mathcal{G} with positive reach.

Question: what can be said about the intrinsic volume function

$$f_j(g) := V_j(\mathcal{G}), \quad \mathcal{G} = \{g \leq 1\}$$

of sublevel sets of PD forms $g \in C_{d,n}$?

For a convex set $\mathcal{G} \subset \mathbb{R}^n$ the volume of its ε -neighborhood

$$\operatorname{vol}(\mathcal{G} + \varepsilon B) = \sum_{j=0}^{n} \varepsilon^{n-j} \kappa_{n-j} V_j(\mathcal{G})$$

behaves polynomially (on ε), where $\kappa_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit Euclidean ball $B \subset \mathbb{R}^n$. The coefficients $V_j(\mathcal{G})$ are called intrinsic volumes of \mathcal{G} . One has $V_n(\mathcal{G}) = \operatorname{vol}(\mathcal{G})$.

Remark Same expansion holds for subsets G with positive reach.

Question: what can be said about the intrinsic volume function

$$f_j(g) := V_j(\mathcal{G}), \quad \mathcal{G} = \{g \leq 1\}$$

of sublevel sets of PD forms $g \in C_{d,n}$? Is it completely monotone?

Complete monotonicity naturally appears in

- analytic combinatorics (\sim generating polynomials of some classes of matroids / graphs)

- analytic combinatorics (\sim generating polynomials of some classes of matroids / graphs)
- real algebraic geometry (~ hyperbolic polynomials, volumes of sublevel sets of nonnegative homogeneous polynomials)

- analytic combinatorics (\sim generating polynomials of some classes of matroids / graphs)
- real algebraic geometry (\sim hyperbolic polynomials, volumes of sublevel sets of nonnegative homogeneous polynomials)
- optimization (universal barrier function)

- analytic combinatorics (\sim generating polynomials of some classes of matroids / graphs)
- real algebraic geometry (\sim hyperbolic polynomials, volumes of sublevel sets of nonnegative homogeneous polynomials)
- optimization (universal barrier function)
- holonomic systems (\sim hypergeometric functions)
- quantum field theory (Feynman integrals, scattering amplitudes, etc.)

- analytic combinatorics (\sim generating polynomials of some classes of matroids / graphs)
- real algebraic geometry (\sim hyperbolic polynomials, volumes of sublevel sets of nonnegative homogeneous polynomials)
- optimization (universal barrier function)
- holonomic systems (\sim hypergeometric functions)
- quantum field theory (Feynman integrals, scattering amplitudes, etc.) ~> a recent paper by J. Henn and P. Raman

Complete monotonicity naturally appears in

- analytic combinatorics (\sim generating polynomials of some classes of matroids / graphs)
- real algebraic geometry (\sim hyperbolic polynomials, volumes of sublevel sets of nonnegative homogeneous polynomials)
- optimization (universal barrier function)
- holonomic systems (\sim hypergeometric functions)
- quantum field theory (Feynman integrals, scattering amplitudes, etc.) ~> a recent paper by J. Henn and P. Raman

Vielen Dank für Ihre Aufmerksamkeit!