# Concepts of Experiments at Future Colliders II 

PD Dr. Oliver Kortner

Introductory example: cylindrical drift tube


- Particle detectors provide current or voltage pulses, which contain information about particle passage or deposited energy.
- To obtain this information, they must be processed electronically.

Analog and digital signals
Analog signal: Information contained in the continuous variation of electrical signal properties, e.g., pulse height, pulse duration, or pulse shape.

Digital signal: Information stored in discrete form.
Example. TTL (Transistor-Transistor Logic):
Logical 0: Signal between 0 and 0.8 V .
Logical 1: Signal between 2 V and 5 V .
Advantage of a digital signal: No information loss with small signal disturbances.

Characteristics of a signal pulse


RISE TIME
FALL TIME

Slow Signal: $t_{A} \gtrsim 100 \mathrm{~ns}$.
Fast Signal: $t_{A} \lesssim 1 \mathrm{~ns}$.

Deformed rectangular pulse
"OVERSHOOT"


## Recapitulation of the previous lecture

## Attenuation and bandwidth

## Attenuation

$\xrightarrow[\text { signal s }]{\mathrm{E}}$ Eingangs- Elektronik $_{\underset{\text { signal s }}{\mathrm{A}}}^{\text {Ausgangs }} \quad$ Attenuation $[\mathrm{dB}]:=10 \cdot \log _{10}\left(\frac{\left|\hat{s_{A}}\right|^{2}}{\left|\hat{s_{E}}\right|^{2}}\right)$.

$$
-3 \mathrm{~dB}=10 \cdot \log _{10}\left(\frac{\left|\hat{s_{A}}\right|^{2}}{\left|\hat{s_{E}}\right|^{2}}\right) \Leftrightarrow \frac{\left|\hat{s_{A}}\right|^{2}}{\left|\hat{s_{E}}\right|^{2}}=10^{-\frac{3}{10}}=\frac{1}{2} .
$$

Bandwidth


Passive electronic components - Ohmic resistance
Drude's model of electrical conduction in metals
Metals are electrical conductors. In an ideal conductor, the conduction electrons experience no resistance. In a real conductor, they collide with the atomic nuclei.

Assumptions

- Neglect of interaction between the conduction electrons.
- Free electron motion between collisions with atomic nuclei.
- Non-accelerated motion in between collisions.
- Elastic collisions between conduction electrons and atomic nuclei. The conduction electrons are not heated by the collisions.


## Recapitulation of the previous lecture

## Electron movement in the Drude model

Equation of motion of a conduction electron:

$$
m_{e} \cdot \frac{d \vec{v}}{d t}=-e \vec{E}
$$

$\tau$ : Average time between two collisions off atoms.

$$
<\vec{v}>=-\frac{e}{m_{e}} \vec{E} \cdot \tau+\underbrace{<\vec{v}_{0}>}_{=0(\text { in therm. equ. })}=-\frac{e}{m_{e}} \tau \cdot \vec{E} .
$$

$n$ : Conduction electron density.
$L$ : Length of the real conductor.
$A$ : Cross section of the real conductor.


$$
d Q=-n \cdot e|\vec{v}| \cdot d t \cdot A \Leftrightarrow I=\frac{d Q}{d t}=-n e v \cdot A=\frac{n e^{2} \tau}{m_{e}} \cdot A \cdot E
$$

Hence

$$
\vec{j}=\frac{n e^{2} \tau}{m_{e}} \cdot \vec{E}=: \sigma \cdot \vec{E}
$$

$\sigma$ : electric conductivity.

## Recapitulation of the previous lecture

Ohm's law
Voltage between the ends of the conductor:

$$
U=L \cdot \underbrace{E}_{=\frac{I}{\sigma \cdot A}}=\frac{L}{\sigma \cdot A} \cdot I=: R \cdot I\left(\mathrm{Ohm}^{\prime} \text { s Law }\right) .
$$

Ohmic resistance

$$
R=\frac{L}{\sigma \cdot A}=: \rho \cdot \frac{L}{A}
$$

$\rho$ : specific resistance (unit: $\Omega \mathrm{cm}$ ).

Schematic symbols for an ohmic resistance:


## Recapitulation of the previous lecture

Passive electronic components - capacitance

$$
C=\frac{Q}{U} \Rightarrow \text { No current flow at DC voltage. }
$$

Current flow at AC voltage:

$$
\frac{d U}{d t}=\frac{\frac{d Q}{d t}}{C}=\frac{I}{C}
$$

Transition to frequency representation:

$$
\begin{gathered}
U(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{U}(\omega) e^{i \omega t} d \omega, I(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{I}(\omega) e^{i \omega t} d \omega \\
\frac{d U}{d t}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} i \omega \hat{U}(\omega) e^{i \omega t} d \omega=\frac{I(t)}{C}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{C} \hat{I}(\omega) e^{i \omega t} d \omega
\end{gathered}
$$

leading to $i \omega \hat{U}(\omega)=\frac{1}{C} \hat{I}(\omega)$, thus $\hat{U}(\omega)=\frac{1}{i \omega C} \hat{I}(\omega)$.

Capacitance - impedance and schematic symbol

$$
\hat{U}(\omega)=\frac{1}{i \omega C} \hat{I}(\omega)
$$

Impedance: $Z_{C}=\frac{1}{i \omega C}$.
Schematic symbol:

Reminder: Field inside an ideal coil
$\frac{d N}{d l}$ : Number of turns per unit length.
Ampére's law:


$$
\begin{aligned}
\oint_{\Gamma} \vec{B} \cdot d \vec{s} & =l \cdot B=\mu_{0} \cdot I \cdot \frac{d N}{d l} \cdot l \\
B & =\mu_{0} \frac{d N}{d l} \cdot I=: \frac{1}{A} L \cdot I
\end{aligned}
$$

A: Cross-sectional area of the coil.
$L$ : Inductance.

## Recapitulation of the previous lecture

Ideal toroidal coil


- $B$ exists only inside the coil.
- If the coil is made of an ideal conductor, $\vec{E}$ inside the conductor is 0 . Otherwise, an infinitely large current would flow through the conductor.

$$
\Rightarrow \quad U_{a b}=0
$$

- With alternating current, because $\frac{d I}{d t} \neq 0, \frac{\partial B}{\partial t} \neq 0$, resulting in a non-zero electromotive force.

$$
\text { curl } \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

$$
U_{a b}=\oint \vec{E} \cdot d \vec{s}=\int_{A} \operatorname{curl} \vec{E} d \vec{A}=-\int_{A} \frac{\partial \vec{B}}{\partial t} \cdot d \vec{A}=-\frac{\partial}{l t} B \cdot A=-\frac{\partial}{\partial t} \frac{1}{A} L I A=-L \frac{d I}{d t}
$$

In the frequency domain, we have $\hat{U}(\omega)=-i \omega L \hat{I}(\omega)$.

Inductance - impedance and circuit symbol

$$
\hat{U}(\omega)=-i \omega L \hat{I}(\omega)
$$

Impedance: $Z_{L}=-i \omega L$.

Circuit Symbol:


Remark. In the frequency domain, the behavior of a circuit containing the mentioned passive elements can be calculated in a similar manner to a circuit containing ohmic resistances, by using impedances.

Signal transmission
Explanatory example: signal transmission via a coaxial cable


Due to their shielding, coaxial cables do not emit electromagnetic waves.
However, they can intercept electromagnetic interference from the surroundings through their shielding.

## Recapitulation of the previous lecture

Signal propagation in a coaxial cable
Equivalent circuit diagram for a $\Delta z$ length segment of a coaxial cable

$\mathrm{R}, \mathrm{L}, \mathrm{C}, \frac{1}{G}$ represent resistance, inductance, capacitance, and conductance per uni $t$ length, respectively.
$\Delta I$ In an ideal cable, $R$ and $G$ are both equal to 0 .

Derivation of the general wave equation for a coaxial cable

$$
\begin{array}{r}
\Delta U=-(R \cdot \Delta z) \cdot I-(L \cdot \Delta z) \cdot \frac{\partial I}{\partial t} \\
\Delta I=-\left(\frac{1}{G} \cdot \Delta z\right) \cdot U-(C \cdot \Delta z) \cdot \frac{\partial U}{\partial t}
\end{array}
$$

Dividing by $\Delta z$ and taking the limit as $\Delta z \rightarrow 0$ yields

$$
\begin{gathered}
\frac{\partial U}{\partial z}=-R \cdot I-L \cdot \frac{\partial I}{\partial t} \\
\frac{\partial I}{\partial z}=-\frac{1}{G} \cdot U-C \cdot \frac{\partial U}{\partial t}
\end{gathered}
$$

## Recapitulation of the previous lecture

Wave equation for a coaxial cable

$$
\begin{gathered}
\frac{\partial U}{\partial z}=-R \cdot I-L \cdot \frac{\partial I}{\partial t}, \quad \left\lvert\, \frac{\partial}{\partial z}\right. \\
\left.\frac{\partial I}{\partial z}=-\frac{1}{G} \cdot U-C \cdot \frac{\partial U}{\partial t} \cdot \right\rvert\, \frac{\partial}{\partial t}
\end{gathered}
$$

$$
\frac{\partial^{2} U}{\partial z^{2}}=-R \cdot \frac{\partial I}{\partial z}-L \frac{\partial^{2}}{\partial z \partial t} I
$$

$$
\frac{\partial^{2}}{\partial z \partial t} I=-\frac{1}{G} \cdot \frac{\partial U}{\partial t}-C \cdot \frac{\partial^{2} U}{\partial t^{2}}
$$

$$
\frac{\partial^{2} U}{\partial z^{2}}=L C \frac{\partial^{2} U}{\partial t^{2}}+(L G+R C) \frac{\partial U}{\partial t}+R G U .
$$

Ideal cable: $\mathrm{R}=0, \mathrm{G}=0 . \frac{\partial^{2} U}{\partial z^{2}}=L C \frac{\partial^{2} U}{\partial t^{2}}$
(Wave equation with $v=\frac{1}{\sqrt{L C}}$ ).

Properties of a coaxial cable

- In a real cable, $G$ is very close to 0.
- In a real cable, $R \neq 0$ leads to dispersion. In practice, the cables used are usually so short that dispersion can be neglected, so $R=0$ can be assumed.
- $L=\frac{\mu}{2 \pi} \ln \frac{b}{a}[\mathrm{H} / \mathrm{m}], C=\frac{2 \pi \epsilon}{\ln \frac{b}{a}}[\mathrm{~F} / \mathrm{m}]$.

$$
\Rightarrow v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu \epsilon}}
$$

Thus, the choice of dielectric determines $v$.

- Characteristic impedance: $Z:=\frac{d U}{d I}=\sqrt{\frac{L}{C}}$.

The characteristic impedance depends on the geometry of the cable, i.e., its inner and outer diameter as well as the dielectric used.

## Reflections at the ends of the cables



$$
U(t, x)=f(x-v t)+g(x+v t)
$$

representing an incoming + reflected wave.
Input signal: $U_{E}, I_{E} . Z=\frac{U_{E}}{I_{E}}$.
Reflected signal: $U_{R}, I_{R}, Z=\frac{U_{R}}{I_{R}}$.
Voltage drop across the resistor $R$ : $U_{E}+U_{R}$.
Current through $R: I_{E}+I_{R}$.

$$
\Rightarrow R=\frac{U_{E}+U_{R}}{I_{E}-I_{R}}=\frac{U_{E}\left(1+\frac{U_{R}}{U_{E}}\right)}{I_{E}\left(1-\frac{I_{R}}{I_{E}}\right)}=Z \frac{1+\rho}{1-\rho}
$$

with the reflection coefficient $\rho:=\frac{U_{R}}{U_{E}}=\frac{I_{R}}{I_{E}}$. It holds $\rho=\frac{R-Z}{R+Z}$.

- Open cable: $R=\infty . \rho=1$. Complete reflection at the cable end.
- Short-circuited cable: $R=0 . \rho=-1$. Reflection with opposite amplitude.
- Terminated cable: $R=Z . \rho=0$. No reflection.
- The analog signals from particle detectors are usually very small. Example: MDT drift tube filled with $\mathrm{Ar} / \mathrm{CO}_{2}$ (93:7) at 3 bar. $\frac{d E}{d x}=7.5 \mathrm{keV} / \mathrm{cm} \widehat{\approx} 7.5 / 0.03=250$ Electron ion pair $/ \mathrm{cm}$. At a gas gain of 20,000 this corresponds a total charge of only $\sim 1 \mathrm{pC}$.
$\Rightarrow$ Protection of small signals by a Faraday cage.
$\Rightarrow$ Amplification of signals.
$\Rightarrow$ Transmission of unamplified signal over as short as possible distances.


## A Faraday cage in electrostatics

- No electric field inside a conductors, otherwise there would be a current.
- The electric field in a region perfectly enclosed by a conducting cavity equals 0.
Proof by contradiction.


If $E$ were non-zero inside the cavity, there would be a path $\Gamma^{\prime}$ for which $\int_{\Gamma^{\prime}} \vec{E} \cdot d \vec{s} \neq 0$.
Since $\vec{E}=0$ inside the conductor, then $\oint_{\Gamma} \vec{E} \cdot d \vec{s}=\int_{\Gamma^{\prime}} \vec{E} \cdot d \vec{s} \neq 0$, which contradicts $\operatorname{rot} \vec{E}=0$.

[^0]1. Equation of motion underlying the Drude model

$$
m_{e} \frac{d \vec{v}}{d t}=-\frac{m_{e}}{\tau} \vec{v}-e \vec{E}
$$

Considering $\vec{E}(t, \vec{x})=\vec{E}(\omega, \vec{x}) e^{-i \omega t}$, then $\vec{v}(t, \vec{x})=\vec{v}(\vec{x}) e^{-i \omega t}$, and we obtain

$$
\vec{v}(\vec{x})=\frac{-e \tau}{m_{e}} \frac{1}{1-i \omega \tau} \vec{E}(\omega, \vec{x})
$$

leading to

$$
\vec{j}=-n e \vec{v}=\frac{e^{2} \tau}{m_{e}} \frac{1}{1-i \omega \tau} \vec{E}=: \underbrace{\frac{\sigma_{0}}{1-i \omega \tau}}_{=: \sigma(\omega)} \vec{E}
$$

2. Maxwell's equations for electromagnetic fields in conductors

$$
\begin{aligned}
& \operatorname{div} \vec{E}=0 . \quad \operatorname{div} \vec{B}=0 . \quad \operatorname{rot} \vec{E}=-\frac{\partial \vec{B}}{\partial t} . \quad \operatorname{rot} \vec{B}=\frac{1}{c^{2} \epsilon_{0}} \vec{j}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} \\
& \operatorname{rot}(\operatorname{rot} \vec{E})=\operatorname{grad}(\underbrace{\operatorname{div} \vec{E}}_{=0})-\Delta \vec{E}=\operatorname{rot}\left(-\frac{\partial \vec{B}}{\partial t}\right)=-\frac{\partial}{\partial t} \operatorname{rot} \vec{B}
\end{aligned}
$$

Now, utilizing $\vec{j}=\sigma(\omega) \vec{E}$ for $\vec{E}(t, \vec{x})=\vec{E}(\omega, \vec{k}) e^{-i(\omega t-\vec{k} \cdot \vec{x})}$, we obtain

$$
|\vec{k}|^{2}=\frac{\omega^{2}}{c^{2}}\left[1+i \frac{\sigma(\omega)}{\epsilon_{0} \omega}\right] .
$$

$\sigma(\omega)=\frac{\sigma_{0}}{1-i \omega \tau} \underset{\omega \tau \gg 1}{\rightarrow} \frac{i \sigma_{0}}{\omega \tau}$, thus

$$
|\vec{k}|^{2}=\frac{\omega^{2}}{c^{2}}\left(1-\frac{\sigma_{0}}{\epsilon_{0} \omega^{2} \tau}\right)=\frac{\omega^{2}}{c^{2}}\left(1-\frac{n e^{2}}{\epsilon_{0} \omega^{2}}\right)
$$

which is negative for $\omega<\frac{n e^{2}}{\epsilon_{0}}$. Then, $|\vec{k}|$ is imaginary and the electric field exponentially decreases with increasing penetration into the conductor.

## Conclusions

- Even alternating fields can be shielded by a Faraday cage if their frequency does not become too high.
- For example, choosing aluminum or brass as sufficiently thick material for the Faraday cage, one can shield fields up to the gigahertz range.

A bipolar transistor is an npn or pnp junction with 3 terminals.


Polarity of an npn transistor


Increasing $U_{B E}$ reduces the voltage between the base and collector, causing diode BC to conduct more and thus allowing more current to flow from the emitter than has flowed into the base.

- A bipolar transistor is a current amplifier with the current amplification $B=\frac{I_{C}}{I_{B}}$.
- The value of $B$ depends on the values of the applied voltages.
- In practice, one is interested in the amplification of small signals. To achieve this, these small signals are superimposed on a DC voltage that sets the operating point of the transistor.
- Since $B$ fluctuates from one transistor to another, the amplification is determined by the circuitry of the transistor, as explained in the following examples.


## Basic equations for small-signal amplification



Goal: Amplification of small, time-varying signals.

$$
\begin{aligned}
& d I_{B}=\left.\frac{\partial I_{B}}{\partial U_{B E}}\right|_{U_{C E}} \cdot d U_{B E}+\left.\frac{\partial I_{B}}{\partial U_{C E}}\right|_{U_{B E}} \cdot d U_{C E} \\
& d I_{C}=\left.\frac{\partial I_{C}}{\partial U_{B E}}\right|_{U_{C E}} \cdot d U_{B E}+\left.\frac{\partial I_{C}}{\partial U_{C E}}\right|_{U_{B E}} \cdot d U_{C E}
\end{aligned}
$$

- $\frac{1}{r_{B E}}:=\left.\frac{\partial I_{B}}{\partial U_{B E}}\right|_{U_{C E}}$ is small. $\left.\frac{\partial I_{B}}{\partial U_{C E}}\right|_{U_{B E}} \approx 0$.
- Slope $S:=\left.\frac{\partial I_{C}}{\partial U_{B E}}\right|_{U_{C E}}$ is large. $\frac{1}{r_{C E}}:=\left.\frac{\partial I_{C}}{\partial U_{C E}}\right|_{U_{B E}}$ is small.

$$
\begin{aligned}
\Rightarrow d I_{B} & =\frac{1}{r_{B E}} \cdot d U_{B E} \\
d I_{C} & =S \cdot d U_{B E}+\frac{1}{r_{C E}} \cdot d U_{C E}
\end{aligned}
$$



Equivalent circuit for calculating the small-signal amplification $A:=\frac{d U_{a}}{d U_{e}}$


$$
\left.\begin{array}{rl}
d I_{E} & =\frac{d U_{e}}{r_{B E}+R_{E}} \underset{r_{B E} \ll R_{E}}{ } \frac{d U_{e}}{R_{E}} \\
d I_{C}= & \frac{d\left(U_{V}-U_{a}\right)}{R_{C}}-\frac{d U_{a}}{R_{C}} \\
d U_{V}=0
\end{array}\right] .
$$

The circuit is inverting with a small-signal amplification that depends only on the configuration of the transistor, namely $R_{C}$ and $R_{E}$.

## 2nd Example: Emitter circuit with voltage feedback



## Calculation of small-signal amplification

Equivalent circuit for calculating the small-signal amplification $A:=\frac{d U_{a}}{d U_{e}}$


$$
\begin{aligned}
d U_{e}=R_{1} d I_{e}, \quad d U_{a} & =R_{N} d I_{N}=-R_{N} d I_{E} \\
& \Rightarrow A=\frac{d U_{a}}{d U_{e}}=\frac{-R_{N}}{R_{1}}
\end{aligned}
$$

The circuit is inverting with a small-signal amplification that depends only on the configuration of the transistor, namely $R_{N}$ and $R_{1}$.

Kapazitives Einkoppeln des Signals, um den
Arbeitspunkt nicht zu verschieben. Möglich, da man nur dU ${ }_{\mathrm{e}}$ verstärken will.


## Operation of a differential amplifier



- Constant current source at the emitter. $\Rightarrow d I_{k}=0$.
- Internal resistance of the constant current source: $r_{k}$.
- $I_{k}=I_{C 1}+I_{C 2} \Rightarrow d I_{C 1}=-d I_{C 2}$.
- So $d U_{a 1}=-d U_{a 2}$.
- Also

$$
d U_{e 1}=d U_{B E 1}=-d U_{B E 2}=-d U_{e 2}
$$

- $U_{D}:=U_{e 1}-U_{e 2}$.

$$
d U_{e 1}=d\left(U_{e 1}-U_{e 2}+U_{e 2}\right)
$$

$$
=d U_{D}+d U_{e 2}=d U_{D}-d U_{e 1}
$$

thus $d U_{D}=\frac{1}{2} d U_{e 1}$.
$\Rightarrow$ Differential amplification $A_{D}=\frac{d U_{a 1}}{d U_{D}}$ $A_{D}=\frac{d U_{a 1}}{2 d U_{B E 1}}=-\frac{1}{2} S\left(R_{C} \| r_{C E}\right)$.
Since $S$ is large, $A_{D}$ is also large.

## Operation of a differential amplifier



- Constant current source at the emitter. $\Rightarrow d I_{k}=0$.
- Internal resistance of the constant current source: $r_{k}$.
- $I_{k}=I_{C 1}+I_{C 2} \Rightarrow d I_{C 1}=-d I_{C 2}$.
- So $d U_{a 1}=-d U_{a 2}$.
- Also

$$
d U_{e 1}=d U_{B E 1}=-d U_{B E 2}=-d U_{e 2}
$$

- $U_{D}:=U_{e 1}-U_{e 2}$.
$d U_{e 1}=d\left(U_{e 1}-U_{e 2}+U_{e 2}\right)$ $=d U_{D}+d U_{e 2}=d U_{D}-d U_{e 1}$, thus $d U_{D}=\frac{1}{2} d U_{e 1}$.
$\Rightarrow$ Differential amplification $A_{D}=\frac{d U_{a 1}}{d U_{D}}$ $A_{D}=\frac{d U_{a 1}}{2 d U_{B E 1}}=-\frac{1}{2} S\left(R_{C} \| r_{C E}\right)$.
Since $S$ is large, $A_{D}$ is also large.

Besides the differential amplification, there is also a much smaller common-mode amplification $A_{\mathrm{CM}}:=\frac{d U_{a 1}}{d\left(U_{e 1}+U_{e 2}\right) / 2}=-\frac{1}{2} \frac{R_{C}}{r_{k}}$, which immediately follows from the formula for the amplification of the emitter circuit with current feedback.

## Alternative to Bip. Transistors: Field-Effect Transistors

Construction of an n-channel junction field-effect transistor


S: Source.
G: Gate.
D: Drain.


N -Kanal-
Sperrschicht-FET


- Control of the size of the charge carrier-free zone via the value of the voltage $U_{G S}$.
- Thickness of the charge carrier-free zone determines the resistance between drain and source.
- Advantage of field-effect transistors over bipolar transistors: Lower power consumption, as the control is done via the applied electric field and not via a current.


## Metal-oxid-semiconductor field-effect transistor



- Structure forms a capacitor from gate terminal, dielectric, and bulk terminal.
- Application of positive voltage between gate and bulk charges the capacitor.
- Electric field causes migration of minority carriers (electrons in p-silicon) to the junction and recombination with majority carriers (defect electrons in p-silicon), known as "depletion".
- Space charge region forms at the junction with negative space charge.
- At threshold voltage $U_{t h}$, displacement of majority carriers becomes significant, limiting recombination.
- Accumulation of minority carriers results in near-inversion of p-doped substrate close to the oxide, known as strong inversion"
- Increased gate voltage induces band bending of conduction and valence bands at the junction in band model.
- Fermi level shifts closer to the conduction band than the valence band, inverting the semiconductor material.
- Formed thin n-type conducting channel connects source and drain n-regions, allowing charge carriers to flow (almost) unimpeded from source to drain.


[^0]:    (Fig.5-12 from Feynman lectures Vol 2)

