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Recapitulation of the previous lecture

Introductory example: cylindrical drift tube
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Particle detectors provide current
or voltage pulses, which contain
information about particle
passage or deposited energy.

To obtain this information, they
must be processed electronically.
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Recapitulation of the previous lecture

Analog and digital signals

Analog signal: Information contained in the continuous variation of
electrical signal properties, e.g., pulse height, pulse duration, or pulse
shape.

Digital signal: Information stored in discrete form.

Example. TTL (Transistor-Transistor Logic):
Logical 0: Signal between 0 and 0.8 V.
Logical 1: Signal between 2 V and 5 V.

Advantage of a digital signal: No information loss with small signal
disturbances.
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Recapitulation of the previous lecture

Characteristics of a signal pulse

Slow Signal: tA ≳100 ns.

Fast Signal: tA ≲1 ns.
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Recapitulation of the previous lecture

Deformed rectangular pulse
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Recapitulation of the previous lecture

Attenuation and bandwidth
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|ŝA|2
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|ŝE |2

)
⇔ |ŝA|2
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Recapitulation of the previous lecture

Passive electronic components – Ohmic resistance

Drude’s model of electrical conduction in metals
Metals are electrical conductors. In an ideal conductor, the conduction
electrons experience no resistance. In a real conductor, they collide with
the atomic nuclei.

Assumptions

Neglect of interaction between the conduction electrons.
Free electron motion between collisions with atomic nuclei.

Non-accelerated motion in between collisions.

Elastic collisions between conduction electrons and atomic nuclei.
The conduction electrons are not heated by the collisions.
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Recapitulation of the previous lecture
Electron movement in the Drude model
Equation of motion of a conduction electron:

me ·
dv⃗

dt
= −eE⃗ .

τ : Average time between two collisions off atoms.

< v⃗ >= − e

me
E⃗ · τ + < v⃗0 >︸ ︷︷ ︸

=0 (in therm. equ.)

= − e

me
τ · E⃗ .

n: Conduction electron density.
L: Length of the real conductor.
A: Cross section of the real conductor.

A

L

vdt

dQ

dQ = −n · e |⃗v | · dt ·A ⇔ I =
dQ

dt
= −nev ·A =

ne2τ

me
·A · E .

Hence

j⃗ =
ne2τ

me
· E⃗ =: σ · E⃗ .

σ: electric conductivity.
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Recapitulation of the previous lecture

Ohm’s law
Voltage between the ends of the conductor:

U = L · E︸︷︷︸
= I

σ·A

=
L

σ ·A
· I =: R · I (Ohm′s Law).

Ohmic resistance

R =
L

σ ·A
=: ρ · L

A
.

ρ: specific resistance (unit: Ωcm).

Schematic symbols for an ohmic resistance:

(USA)

(DIN)
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Recapitulation of the previous lecture
Passive electronic components – capacitance

C =
Q

U
⇒ No current flow at DC voltage.

Current flow at AC voltage:

dU

dt
=

dQ
dt

C
=

I

C
.

Transition to frequency representation:

U (t) =
1√
2π

∞∫
−∞

Û (ω)e iωtdω, I (t) =
1√
2π

∞∫
−∞

Î (ω)e iωtdω.

dU

dt
=

1√
2π

∞∫
−∞

iωÛ (ω)e iωtdω =
I (t)

C
=

1√
2π

∞∫
−∞

1

C
Î (ω)e iωtdω,

leading to iωÛ (ω) = 1
C Î (ω), thus Û (ω) = 1

iωC Î (ω) .
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Recapitulation of the previous lecture

Capacitance – impedance and schematic symbol

Û (ω) = 1
iωC Î (ω).

Impedance: ZC = 1
iωC .

Schematic symbol:
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Passive electronic elements – inductance

Reminder: Field inside an ideal coil

B

Γ

l

dN
dl : Number of turns per unit length.
Ampére’s law:∮

Γ

B⃗ · ds⃗ = l · B = µ0 · I · dN
dl

· l .

B = µ0
dN

dl
· I =:

1

A
L · I .

A: Cross-sectional area of the coil.
L: Inductance.
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Recapitulation of the previous lecture

Ideal toroidal coil

a    b

B exists only inside the coil.

If the coil is made of an ideal conductor, E⃗ inside
the conductor is 0. Otherwise, an infinitely large
current would flow through the conductor.

⇒ Uab = 0.

With alternating current, because dI
dt ̸= 0, ∂B

∂t ̸= 0, resulting in a
non-zero electromotive force.

curl E⃗ = −∂B⃗

∂t
.

Uab =

∮
E⃗ · ds⃗ =

∫
A

curl E⃗dA⃗ = −
∫
A

∂B⃗

∂t
· dA⃗ = −∂

lt
B ·A = − ∂

∂t

1

A
LIA = −L

dI

dt
.

In the frequency domain, we have Û (ω) = −iωLÎ (ω) .
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Recapitulation of the previous lecture

Inductance – impedance and circuit symbol

Û (ω) = −iωLÎ (ω).
Impedance: ZL = −iωL.

Circuit Symbol:

(USA)

(DIN)

Remark. In the frequency domain, the behavior of a circuit containing the
mentioned passive elements can be calculated in a similar manner
to a circuit containing ohmic resistances, by using impedances.
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Recapitulation of the previous lecture

Signal transmission

Explanatory example: signal transmission via a coaxial cable

Due to their shielding, coaxial cables do not emit electromagnetic waves.
However, they can intercept electromagnetic interference from the
surroundings through their shielding.
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Recapitulation of the previous lecture
Signal propagation in a coaxial cable
Equivalent circuit diagram for a ∆z length segment of a coaxial cable

∆ U

∆ I

R L

C
1

G

R, L, C, 1
G represent resistance, inductance,

capacitance, and conductance per uni t
length, respectively.

In an ideal cable, R and G are both equal to
0.

Derivation of the general wave equation for a coaxial cable

∆U = −(R ·∆z ) · I − (L ·∆z ) · ∂I
∂t

.

∆I = −
(

1

G
·∆z

)
·U − (C ·∆z ) · ∂U

∂t
.

Dividing by ∆z and taking the limit as ∆z → 0 yields
∂U

∂z
= −R · I − L · ∂I

∂t
,

∂I

∂z
= − 1

G
·U − C · ∂U

∂t
.
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Recapitulation of the previous lecture
Wave equation for a coaxial cable

∂U

∂z
= −R · I − L · ∂I

∂t
, | ∂

∂z
·

∂I

∂z
= − 1

G
·U − C · ∂U

∂t
. | ∂

∂t
·

∂2U

∂z 2
= −R · ∂I

∂z
− L

∂2

∂z∂t
I ,

∂2

∂z∂t
I = − 1

G
· ∂U
∂t

− C · ∂
2U

∂t2
.

∂2U

∂z 2
= LC

∂2U

∂t2
+ (LG + RC )

∂U

∂t
+ RGU .

Ideal cable: R=0, G=0. ∂2U

∂z 2
= LC

∂2U

∂t2

(Wave equation with v = 1√
LC

).
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Recapitulation of the previous lecture

Properties of a coaxial cable

In a real cable, G is very close to 0.

In a real cable, R ̸= 0 leads to dispersion. In practice, the cables used
are usually so short that dispersion can be neglected, so R = 0 can be
assumed.

L = µ
2π ln b

a [H/m], C = 2πϵ
ln b

a

[F/m].

⇒ v =
1√
LC

=
1

√
µϵ

.

Thus, the choice of dielectric determines v .

Characteristic impedance: Z := dU
dI =

√
L
C .

The characteristic impedance depends on the geometry of the cable,
i.e., its inner and outer diameter as well as the dielectric used.
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Reflections at the ends of the cables

U (t , x ) = f (x − vt) + g(x + vt),

representing an incoming + reflected wave.

Input signal: UE , IE . Z = UE
IE

.

Reflected signal: UR, IR, Z = UR
IR

.
Voltage drop across the resistor R: UE +UR.
Current through R: IE + IR.

⇒ R =
UE +UR

IE − IR
=

UE

(
1 + UR

UE

)
IE

(
1− IR

IE

) = Z
1 + ρ

1− ρ

with the reflection coefficient ρ := UR
UE

= IR
IE

. It holds ρ = R−Z
R+Z .

Open cable: R = ∞. ρ = 1. Complete reflection at the cable end.
Short-circuited cable: R = 0. ρ = −1. Reflection with opposite
amplitude.
Terminated cable: R = Z . ρ = 0. No reflection.
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Processing of analog detector signals

The analog signals from particle detectors are usually very small.

Example: MDT drift tube filled with Ar/CO2 (93:7) at 3 bar.
dE
dx = 7.5 keV/cm≈̂7.5/0.03 = 250 Electron ion pair/cm.
At a gas gain of 20,000 this corresponds a total charge of
only ∼ 1 pC.

⇒ Protection of small signals by a Faraday cage.

⇒ Amplification of signals.

⇒ Transmission of unamplified signal over as short as possible distances.
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A Faraday cage in electrostatics

No electric field inside a conductors, otherwise there would be a
current.

The electric field in a region perfectly enclosed by a conducting cavity
equals 0.
Proof by contradiction.

Γ ’

(Fig.5-12 from Feynman lectures Vol 2)

If E were non-zero inside the cavity, there
would be a path Γ′ for which

∫
Γ′
E⃗ · ds⃗ ̸= 0.

Since E⃗ = 0 inside the conductor, then∮
Γ

E⃗ · ds⃗ =
∫
Γ′
E⃗ · ds⃗ ̸= 0, which contradicts

rot E⃗ = 0.
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Functioning of a Faraday cage in alternating fields

1. Equation of motion underlying the Drude model

me
dv⃗

dt
= −me

τ
v⃗ − eE⃗ .

Considering E⃗ (t , x⃗ ) = E⃗ (ω, x⃗ )e−iωt , then v⃗(t , x⃗ ) = v⃗(x⃗ )e−iωt , and we obtain

v⃗(x⃗ ) =
−eτ

me

1

1− iωτ
E⃗ (ω, x⃗ ),

leading to

j⃗ = −nev⃗ =
e2τ

me

1

1− iωτ
E⃗ =:

σ0
1− iωτ︸ ︷︷ ︸
=:σ(ω)

E⃗
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Functioning of a Faraday cage in alternating fields

2. Maxwell’s equations for electromagnetic fields in conductors

div E⃗ = 0. div B⃗ = 0. rot E⃗ = −∂B⃗

∂t
. rot B⃗ =

1

c2ϵ0
j⃗ +

1

c2
∂E⃗

∂t
.

rot(rot E⃗ ) = grad(div E⃗︸ ︷︷ ︸
=0

)−∆E⃗ = rot

(
−∂B⃗

∂t

)
= − ∂

∂t
rot B⃗ .

Now, utilizing j⃗ = σ(ω)E⃗ for E⃗ (t , x⃗ ) = E⃗ (ω, k⃗)e−i(ωt−k⃗ ·x⃗), we obtain

|⃗k |2 = ω2

c2

[
1 + i

σ(ω)

ϵ0ω

]
.

σ(ω) = σ0
1−iωτ →

ωτ≫1

iσ0
ωτ , thus

|⃗k |2 = ω2

c2

(
1− σ0

ϵ0ω2τ

)
=

ω2

c2

(
1− ne2

ϵ0ω2

)
,

which is negative for ω < ne2

ϵ0
. Then, |⃗k | is imaginary and the electric field

exponentially decreases with increasing penetration into the conductor.
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Functioning of a Faraday cage in alternating fields

Conclusions

Even alternating fields can be shielded by a Faraday cage if their
frequency does not become too high.
For example, choosing aluminum or brass as sufficiently thick
material for the Faraday cage, one can shield fields up to the
gigahertz range.
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Bipolar transistor as an example of a signal amplifier

A bipolar transistor is an npn or pnp junction with 3 terminals.

=̂

(Kollektor)

(Basis)

(Emitter)

In Sperrrichtung betrieben

In Durchgangsrichtung betrieben

Polarity of an npn transistor
Increasing UBE reduces the voltage
between the base and collector,
causing diode BC to conduct more
and thus allowing more current to
flow from the emitter than has
flowed into the base.
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Concept of small-signal amplification

A bipolar transistor is a current amplifier with the current
amplification B = IC

IB
.

The value of B depends on the values of the applied voltages.

In practice, one is interested in the amplification of small signals. To
achieve this, these small signals are superimposed on a DC voltage
that sets the operating point of the transistor.

Since B fluctuates from one transistor to another, the amplification is
determined by the circuitry of the transistor, as explained in the
following examples.
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Basic equations for small-signal amplification

I
B

I
C

U
BE

U
CE

C

B

E

Goal: Amplification of small, time-varying signals.

dIB =
∂IB
∂UBE

∣∣∣∣
UCE

· dUBE +
∂IB
∂UCE

∣∣∣∣
UBE

· dUCE ,

dIC =
∂IC
∂UBE

∣∣∣∣
UCE

· dUBE +
∂IC
∂UCE

∣∣∣∣
UBE

· dUCE .

1
rBE

:= ∂IB
∂UBE

|UCE
is small. ∂IB

∂UCE
|UBE

≈ 0.

Slope S := ∂IC
∂UBE

|UCE
is large. 1

rCE
:= ∂IC

∂UCE
|UBE

is small.

⇒ dIB =
1

rBE
· dUBE ,

dIC = S · dUBE +
1

rCE
· dUCE .

27 27



1st Example: Emitter circuit with current feedback

U
V

Eingangs−

spannung

(Versorgungsspannung)

(Ausgangsspannung)
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Calculation of small-signal amplification

Equivalent circuit for calculating the small-signal amplification A := dUa
dUe

U
V

R
C

R
E

r
CE

r
BE

U
e

C
I

E
I

U
a

+

dIE =
dUe

rBE + RE
≈

rBE≪RE

dUe

RE
.

dIC =
d(UV −Ua)

RC
−dUa

RC
dUV=0

.

dIE = dIC ⇒ A =
dUa

dUe
= −RC

RE
.

The circuit is inverting with a small-signal amplification that depends
only on the configuration of the transistor, namely RC and RE .
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2nd Example: Emitter circuit with voltage feedback
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Calculation of small-signal amplification

Equivalent circuit for calculating the small-signal amplification A := dUa
dUe

UV

RC

r CE

r BE

Ua

UE

RN

R1

NI

eI

+
Sehr groß, da

Diode in Sperrichtung

Sehr klein, da Diode in Durchlassrichtung,

B wie auf Erde.

dUe = R1dIe , dUa = RN dIN = −RN dIE .

⇒ A =
dUa

dUe
=

−RN

R1
.

The circuit is inverting with a small-signal amplification that depends
only on the configuration of the transistor, namely RN and R1.
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Operating point adjustment

Spannungsteiler zur Fest−

legung des Arbeitspunktes

des Transistors

Kapazitives Auskoppeln,

Kapazitives Einkoppeln des Signals, um den

Arbeitspunkt nicht zu verschieben. Möglich, da

man nur dU  verstärken will.e

um nur dU  zu sehen.a
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Operation of a differential amplifier

Constant current source at
the emitter. ⇒ dIk = 0.

Internal resistance of the
constant current source: rk .

Ik = IC1 + IC2 ⇒ dIC1 = −dIC2.

So dUa1 = −dUa2.

Also
dUe1 = dUBE1 = −dUBE2 = −dUe2.

UD := Ue1 −Ue2.
dUe1 = d(Ue1 −Ue2 +Ue2)

= dUD + dUe2 = dUD − dUe1,
thus dUD = 1

2dUe1.

⇒ Differential amplification AD = dUa1
dUD

AD = dUa1
2dUBE1

= −1
2S (RC ||rCE ).

Since S is large, AD is also large.

Besides the differential amplification, there is also a much smaller
common-mode amplification ACM := dUa1

d(Ue1+Ue2)/2
= −1

2
RC
rk

, which
immediately follows from the formula for the amplification of the emitter
circuit with current feedback.
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Alternative to Bip. Transistors: Field-Effect Transistors

Construction of an n-channel junction field-effect transistor

S: Source.

G: Gate.

D: Drain. −

−

−

−

Control of the size of the charge
carrier-free zone via the value of the
voltage UGS .

Thickness of the charge carrier-free
zone determines the resistance
between drain and source.

Advantage of field-effect transistors
over bipolar transistors: Lower power
consumption, as the control is done
via the applied electric field and not
via a current.
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Metal-oxid-semiconductor field-effect transistor

Structure forms a capacitor from gate terminal, dielectric, and bulk terminal.
Application of positive voltage between gate and bulk charges the capacitor.
Electric field causes migration of minority carriers (electrons in p-silicon) to the junction and
recombination with majority carriers (defect electrons in p-silicon), known as “depletion“.
Space charge region forms at the junction with negative space charge.
At threshold voltage Uth , displacement of majority carriers becomes significant, limiting recombination.
Accumulation of minority carriers results in near-inversion of p-doped substrate close to the oxide,
known as strong inversion“
Increased gate voltage induces band bending of conduction and valence bands at the junction in band
model.
Fermi level shifts closer to the conduction band than the valence band, inverting the semiconductor
material.
Formed thin n-type conducting channel connects source and drain n-regions, allowing charge carriers
to flow (almost) unimpeded from source to drain.
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