Deciphering the Universe: Cryogenic detectors for neutrino and dark matter searches

LUCA PATTAVINA UNIVERSITY OF MILAND BICOCCA INFN-MIB

Max Planck Institute for Physics - Garching - May 21st, 2024

MOTIVATION

What is matter ?

Neutrinos & Dark Matter

Matter-antimatter asymmetry How matter is created ?

most abundant particles as probes

Sensitive technology

Cryogenic detectors

OPEN QUESTIONS

Neutrino properties

0

. 0

WHAT IS MATTER

Astroparticle observatory

searches

OPEN QUESTIONS

Neutrino properties

0

. 0

WHATIS MAITER

Astroparticle observatory

searches

HOW MATTER IS CREATED?

NEUTRINOLESS DOUBLE-BETA DECAY

Shed light on matter-antimatter asymmetry

Neutrinos are Majorana particles

Half-life measures neutrino mass:

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q,Z) \cdot |M^{0\nu}|^2 \cdot m_{\beta\beta}^2$$

HOW MATTER IS CREATED?

NEUTRINGLESS DOUBLE-BETA DECAY

Rarest decay $\tau > 10^{26}$ y

Experimental parameters:

Large exposure (ton×y)

Ultra-low-background (1 c/ton/y/Rol)

Excellent energy resolution (~0.1% @ Rol)

WHAT IS A CRYDGENIC DETECTOR ?

LOW-T CALORIMETER

C ~ O(pJ/K) ~ O(keV/µK)

A highly sensitive <u>calorimeter</u> operated @ 10 mK

Energy deposits are measured as temperature variations of the absorber.

Thermistors are a key technology

CUDRE EXPERIMENT $1 M^3 DETECTOR @ 10 MK$

World's largest cryogenic detector @ underground of LNGS (3600 m w.e.) International collaboration (100+ members)

Detector:

750 kg of ^{nat}TeO₂ (¹³⁰Te 33% natural i.a.)

Array of 1000 cryogenic detectors

THE CUORE DETECTOR

BACKGROUND REDUCTION TECHNIQUES

- > Internal shield @ 4K ArchPb
- > Material selection detector purity @ ppt [10⁻¹² g/g]
- > Anti-coincidence 1000 detectors array

CUDRE $0\nu\beta\beta$ results FOR A MATTER CREATION PROCESS NG

CUORE total detector energy spectrum (exposure 2 ton×y)

CUORE Coll., ArXiv:2404.04453

CUDRE $0\nu\beta\beta$ results

CUDRE $0\nu\beta\beta$ results R CREATION ER F ΜΔΤ 200⁶⁰Co sum 180 Results 160

$$T_{1/2}^{0\nu}(^{130}Te) > 4 \times 10^{25}y$$

$$m_{\beta\beta} < (70 - 240) \ meV$$

Detector performance: FWHM @ ROI - 7.5 keV Bkg @ ROI - 1.4×10⁻² c/keV/kg/y

CUORE Coll., ArXiv:2404.04453

CUDRE $0\nu\beta\beta$ results 200⁶⁰Co sum 180 Results 160 140 Counts 120 $T_{1/2}^{0\nu}(^{130}Te) > 4 \times 10^{25}y$ 100 80 60 $m_{\beta\beta} < (70 - 240) \ meV$

Detector performance: FWHM @ ROI - 7.5 keV Bkg @ ROI - 1.4×10⁻² c/keV/kg/y

CUORE Coll., ArXiv:2404.04453

CREATION PROCESS — Best fit ----- 90% C.I. limit on Γ_{0v} pectrum (exposure 2 tonxy) SD ²¹⁰Po 2500 2520 2540 2560 ¹⁹⁰Pt Energy (keV) ²³⁰Th+ ²³²Th ²⁰⁸Tl ²¹⁴Bi ²²⁶Ra ²³⁸II 2000 4000 5000 Energy (keV)

CUORE Coll., ArXiv:2404.04453

BACKGROUNDS SUPPRESSION

SINGLE CHANNEL READ-DUT

BACKGROUNDS SUPPRESSION

DOUBLE CHANNEL READ-OUT

Read out of Scintillation light using auxiliary Light Detector

Particle ID

CUORE SUCCESSOR: CUPID CUDRE UPGRADE WITH PARTICLE ID

CUPID-0: particle ID with **LD**

CUPID-Mo: Li₂¹⁰⁰**Mo**O₄ target

> lowest bkg in a cryo-det: 3x10⁻³ c/keV/kg/y @ ROI

> excellent radiopurity: ²³²Th: <2 uBq/kg ; ²³⁸U: <3 uBq/kg

O. Azzolini, LP et al., Eur. Phys. J. C (2018) 78:428

L Cardani, LP et al 2013 JINST 8 P10002

merging 3 technologies

CUORE: cryogenic infrastructure

> Continuous operation since 2018

CUORE Coll., *Nature* 604, pages 53–58 (2022)

CUDRE UPGRADE WITH PARTICLE ID REPLACING NATTED2 WITH LI2¹⁰⁰MOO4

CUPID

CUORE infrastructure background

OPEN QUESTIONS

Neutrino properties

0

.0

Astroparticle observatory

WHATIS MATTER

WHAT IS MATTER ?

YOU MEAN DARK MATTER ...

Great variety of DM candidates

Astronomy: Roen Kelly, after NIST

Great variety of theoretically motivated dark matter particle candidates 20

WHAT IS MATTER ?

YOU MEAN DARK MATTER ...

Great variety of DM candidates

Astronomy: Roen Kelly, after NIST

Experimental efforts 21

WHAT IS MATTER ?

YOU MEAN DARK MATTER ...

Great variety of DM candidates

Astronomy: Roen Kelly, after NIST

HOW TO LOOK FOR DM

LOW ENERGY SEARCHES

- > Elastic and coherent scattering (spin independent)
- > Low interaction cross-section

THE DM SIGNAL

THE CHALLENGE

CRESST EXPERIMENT SUB-GEV DARK MATTER EXPLORER

- Low-threshold cryo-detectors
- @ underground of LNGS (3600 m w.e.)
- International collaboration (50+ members)

CRESST-III PHYSICS RESULTS LEADING THE SECTOR

Si wafer detector: 0.35 g

Detector energy threshold 10 eV

CONSTRAINING DM PROPERTIES THE LOWER, THE BETTER

OPEN QUESTIONS

Neutrino properties

0

. 0

oparticle observatory

Dark Matter searches

WHAT IS MATTER

SUPERNOVAE: COSMIC FIREWORKS SETTING THE STAGE

Supernovae (SN): high-energy explosions of massive stars

Almost total star binding energy converted into <u>all flavor-neutrinos</u> but also **GW** and **EM** radiation

Neutrinos: direct **probes** and **messengers** of SNe hidden dynamics

Rare event: **1 observation** with underground instrumentation (1987)

Wikipedia - Combination of images from Hubble, Spitzer e Chandra

NEUTRINDS ARE EMITTED AT ALL TIMES UNIQUE NEUTRINO SIGNATURE

Nota Bene: neutrino flavor oscillations not included

Neutrino transport simulation of a Core-Collapse SN

A. Mirizzi et al., Riv. Nuovo Cim.39, 1 (2016)

MPA Supernova Archive: https://wwwmpa.mpa-garching.mpg.de/ccsnarchive

SUPERNOVA NEUTRINO SIGNAL

WHAT IS THE AVERAGE NEUTRIND ENERGY?

 v_x is the most **intense** component of the flux

Current SN neutrino detectors are mostly sensitive to anti-v_e/v_e

 v_x is the most **energetic** component of the flux

ALL NEUTRIND FLAVORS ARE DETECTED **COHERENT NEUTRING-NUCLEUS SCATTERING**

> High interaction cross-section

> Equally sensitive to all v-flavors

ALL NEUTRIND FLAVORS ARE DETECTED COHERENT NEUTRIND-NUCLEUS SCATTERING

> High interaction cross-section

* Spin 0 interaction

> Equally sensitive to all v-flavors

$$F^{2}(q^{2}) E^{2}_{\nu} Q^{2}_{W}$$

Nuclear Form Neutrino factor energy

$$Q_W = N - Z(1 - 4\sin^2\theta)$$

Weak nuclear charge

ALL NEUTRIND FLAVORS ARE DETECTED COHERENT NEUTRIND-NUCLEUS SCATTERING

- > High interaction cross-section

cross-section

> Equally sensitive to all v-flavors

34

ALL NEUTRIND FLAVORS ARE DETECTED

Pb ideal target

Highest neutron number Highest nuclear stability

ALL NEUTRIND FLAVORS ARE DETECTED **COHERENT NEUTRING-NUCLEUS SCATTERING**

Pb ideal target

Highest neutron number Highest nuclear stability

ALL NEUTRIND FLAVORS ARE DETECTED

Pb ideal target

Highest neutron number Highest nuclear stability

ALL NEUTRIND FLAVORS ARE DETECTED COHERENT NEUTRIND-NUCLEUS SCATTERING

RES-NOVA EXPERIMENT "NEW THING" - A NEW WAY TO LOOK AT NEUTRINOS

European Research Council Established by the European Commission

- Ultra-low background cryo detectors
- Low-energy neutrino observatory
- International Group of Interest (40+ members)

RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH

Established by the European Commission

Detection channel

Coherent neutrinonucleus scattering

Technology

Cryogenic detectors

Target material PbWO₄ from archaeological-Pb

RES-NOVA DETECTOR TECHNOLOGY ADVANCED CRYOGENIC DETECTORS Cryogenic calorimeters made from Pb

Cryogenic measurement of commercial PbWO₄

J.W. Beeman, LP et al., Eur. Phys. J. A 49, 50 (2013)

RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH

Established by the European Commission

Detection channel

Coherent neutrinonucleus scattering

Technology

Cryogenic detectors

Target material PbWO₄ from archaeological-Pb

CRYDGENIC DETECTORS BUILT FROM ARCHAEOLOGICAL PB

Archaeological Roman Pb:

- **†** from underwater shipwreck
- \star 2000 years old

Archaeo-Pb cryogenic detector

High radiopurity: < 1 mBq/kg

x10⁴ better than commercial low-background Pb

L. Pattavina et al., Eur. Phys. J. A 55, 127 (2019)

Several tons of ArchPb available

43

RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH

Established by the European Commission

Detection channel

Coherent neutrinonucleus scattering

Technology

Cryogenic detectors **Target material** PbWO₄ from archaeological-Pb

RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH

Galactic SN neutrino signal:

Water Cherenkov (SuperK): 0.2 ev./m³

Liquid Scintillator (SNO+): 0.4 ev./m³

* * * * * * * * *

Established by the European Commission

<u>RES-NOVA: ~200 ev./m³</u>

Detection channel

Coherent neutrinonucleus scattering

Technology

Cryogenic detectors

Target material PbWO₄ from archaeological-Pb

What can we learn?

Core-collapse physics studies

Characterization of SN remnants

Neutrino mass properties

Multi-messenger Astronomy

NEUTRIND DBSERVATORY AT THE CM-SCALE AN ARRAY OF PBWO4 CRYSTALS

Size: Threshold: SN @ 10 kpc:	RN-demo @ LNGS (30 cm) ³ 1 keV ~10 counts	
Size: Threshold: SN @ 10 kpc:	RN-1 (60 cm) ³ 1 keV ~50 counts	
Size: Threshold: SN @ 10 kpc:	RN-2 (140 cm) ³ 1 keV ~900 counts	

SN ENERGY RECONSTRUCTION IN RES-NOVA

Reconstruction of A_T and <E> by likelihood analysis

Precision in total SN energy reconstruction

 v_x/anti-v_x
 v_e/anti-v_e

 RN-I
 30%

 RN-2
 8%

 RN-3
 4%

L. Pattavina et al., Phys. Rev. D 102, 063001 (2020) A. Gallo Rosso et al., JCAP 04 (2018) 040

RES-NOVA DETECTS SN NEUTRINOS

L. Pattavina et al., *Phys. Rev. D* 102, 063001 (2020)

RES-NOVA DETECTS SN NEUTRINOS

50

L. Pattavina et al., *Phys. Rev. D* 102, 063001 (2020)

RES-NOVA Group of Interest, *Eur. Phys. J. C* 82, 692 (2022)

N. Ferreiro, L. Pattavina et al., J. Low Temp. Phys. 11, 184 (2022)

RES-NOVA PROOFS OF PRINCIPLE

ACHIEVEMENT OF LOW THRESHOLD AND LOW BACKGROUND

Nuclear recoil threshold – 300 eV (PbWO₄ – 20 g)

10⁰ Counts / (kg·keV·d)

SEMINAL PAPER 40 YEARS AGO

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

A. Drukier and L. Stodolsky Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany (Received 21 November 1983)

We study detection of MeV-range neutrinos through elastic scattering on nuclei and identification of the recoil energy. The very large value of the neutral-current cross section due to coherence indicates a detector would be relatively light and suggests the possibility of a true "neutrino observatory." The recoil energy which must be detected is very small $(10-10^3 \text{ eV})$, however. We examine a realization in terms of the superconducting-grain idea, which appears, in principle, to be feasible through extension and extrapolation of currently known techniques. Such a detector could permit determination of the neutrino energy spectrum and should be insensitive to neutrino oscillations since it detects all neutrino types. Various applications and tests are discussed, including spallation sources, reactors, supernovas, and solar and terrestrial neutrinos. A preliminary estimate of the most difficult backgrounds is attempted.

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

RES-NOVA BACKGROUND MODEL

Component	Source	Activity	
	Isotope	$[\mathrm{Bq/kg}]~(\mathrm{[Bq/cm^2]})$	
PbWO ₄ crystals	232 Th	$<2.3 imes10^{-4}$	[50]
	$^{238}\mathrm{U}$	$< 7.0 imes 10^{-5}$	[50]
	210 Pb	$<7.1\times10^{-4}$	[36]
Cu structure	232 Th	$< 2.1 \times 10^{-6}$	[35]
	238 U	$< 1.2 \times 10^{-5}$	[35]
	210 Pb	$< 2.2 imes 10^{-5}$	[35]
Cu surface	$^{232}{ m Th}$ - $10~\mu{ m m}$	$(5.0 \pm 1.7) \times 10^{-9}$	[35]
	$^{238}\mathrm{U}$ - 10 $\mathrm{\mu m}$	$(1.4 \pm 0.2) imes 10^{-8}$	[35]
	$^{210}\mathrm{Pb}$ - $10~\mathrm{\mu m}$	$< 1.9 imes 10^{-8}$	[35]
	$^{210}\mathrm{Pb}$ - $0.1~\mathrm{\mu m}$	$(4.3 \pm 0.5) imes 10^{-8}$	[35]
	$^{210}\mathrm{Pb}$ - $0.01~\mathrm{\mu m}$	$(2.9 \pm 0.4) imes 10^{-8}$	[35]
PTFE holders	232 Th	$< 6.1 \times 10^{-6}$	[35]
	$^{238}\mathrm{U}$	$<2.2\times10^{-5}$	[35]
	²¹⁰ Pb	$<2.2\times10^{-5}$	[35]
Environment	neutrons	$3.7{ imes}10^{-6}{ m cm}^{-2}s^{-1}$	[59]

Modular detector

L. Pattavina et al., JCAP 10 (2021) 064

Detector response studies to radioactive background sources – MC simulations

Detector energy response

RES-NOVA BACKGROUND MODEL

High multiplicity SN signal

Bkg goal: <10⁻³ ev/ton/keV/s in coincidence mode (no particle ID)

<0.086 c/keV/kg/d

L. Pattavina et al., JCAP 10 (2021) 064

High multiplicity bkg _____ Low-background

Detector energy spectrum for a SN @ 10 kpc

RES-NOVA SENSITIVITY

SMALL DETECTOR GREAT POTENTIAL

Target: archaeo-PbWO₄ Energy threshold: 1 keV Bkg @ ROI: 10-3 c/keV/ton/s/

L. Pattavina et al., *JCAP* 10 (2021) 064

DIFFUSE SN NEUTRIND BACKGROUND

PAST

$$\Phi_{\nu_{\beta}}(E) = \frac{c}{H_0} \int_{8M_0}^{125M_0} dM \int_0^z \times \left[f_{\rm CC-SN} F_{\nu_{\beta},\rm CC-S} \right]$$
Cosmological Flux produces the product of CC-SN and produces the product of CC-SN and produces the product of CC-SN and product

PRESENT

CURRENT STATUS OF DSNB SEARCHES

ANTI- V_E **DSNB** IS ALMOST THERE

DSNB flux energy spectrum

M. Harada et al 2023 ApJL 951 L27

DSNB IN ALL FLAVORS WITH RES-NOVA

UNIQUE OPPORTUNITY

58

RES-NOVA IMPACT

CONCLUSIONS: WHAT IS MATTER?

Versatile experimental technique – tuneable to the physics target > 0vBB, DM, neutrino observatory, solar axion, nuclear physics, ...

Laboratory test of matter-antimatter asymmetry

> high-impact physics program with CUPID

Dark Matter fundamental properties > cryogenic detectors (CRESST) are leading light-DM searches

Neutrino interaction with matter

- > long-term physics program with RES-NOVA
- > astrophysical observatory broad physics reach

