Neutrinos: First, Second and Third order

Elisa Resconi Technical University of Munich 10.05.2024

https://www.ph.nat.tum.de/cosmic-particles/experimental-physics-with-cosmic-particles/

Neutrinos

<u>1st order:</u>

understand neutrino properties

<u>2nd order:</u>

neutrinos as a probe of cosmic objects

& understand neutrino properties

<u>3rd order:</u>

neutrinos as a probe of cosmic populations & probe of cosmic objects, dark matter, relic neutrinos & understand neutrino properties

Neutrinos

<u>1st order:</u>

understand neutrino properties

large volume neutrino experiments

<u>2nd order:</u>

neutrinos as a probe of cosmic objects

& understand neutrino properties

very large volume neutrino experiments

<u>3rd order</u>:

neutrinos as a probe of cosmic populations & probe of cosmic objects, dark matter, relic neutrinos & understand neutrino properties

several smart & very large volume neutrino experiments

Oth order: Neutrino Sources

Neutrino Sources: natural ones

Grand Unified Neutrino Spectrum (GUNS) at Earth integrated over directions and flavors

ПП

Neutrino Sources: natural ones

Grand Unified Neutrino Spectrum (GUNS) at Earth integrated over directions and flavors

Neutrino Cross Sections

Charged-current ν_{μ} cross section per nucleon as a function of the neutrino energy

ΠП

Oth order: Neutrino Experiments

Neutrino experiments: precision and high energy

Energy Range	Experiment	Technology	Detected Flavor
$\lesssim 10^3~{ m GeV}$	JUNO	Liquid scintillator	All Flavors
$\lesssim 10^3~{ m GeV}$	DUNE	LArTPC	All Flavors
$\lesssim 10^3~{ m GeV}$	THEIA	WbLS	All Flavors
$\lesssim 10^3 \; { m GeV}$	Super-Kamiokande	Gd-loaded Water C	All Flavors
$\lesssim 10^4 { m ~GeV}$	Hyper-Kamiokande	Water Cherenkov	All Flavors
$\lesssim 10^5~{ m GeV}$	ANTARES	Sea-Water Cherenkov	$ u_{\mu},ar{ u}_{\mu}$ (CC)
$\lesssim 10^6~{ m GeV}$	IceCube/IceCube-Gen2	Ice Cherenkov	All Flavors
$\lesssim 10^6~{ m GeV}$	KM3NeT	Sea-Water Cherenkov	All Flavors
$\lesssim 10^6 { m ~GeV}$	Baikal-GVD	Lake-Water Cherenkov	All Flavors
$\lesssim 10^6 { m ~GeV}$	P-ONE	Sea-Water Cherenkov	All Flavors
$1-100 \; \mathrm{PeV}$	ТАМВО	Earth-skimming WC	$ u_{ au},ar{ u}_{ au}$ (CC)
$\gtrsim 1~{ m PeV}$	Trinity	Earth-skimming Image	$ u_{ au},ar{ u}_{ au}$ (CC)
$\gtrsim 10 \; { m PeV}$	RET-N	Radar echo	All Flavors
$\gtrsim 10 \; { m PeV}$	IceCube-Gen2	In-ice Radio	All Flavors
$\gtrsim 10 \; { m PeV}$	ARIANNA-200	On-ice Radio	All Flavors
$\gtrsim 20~{ m PeV}$	POEMMA	Space Air-shower Image	$ u_{ au},ar{ u}_{ au}$ (CC)
$\gtrsim 100 { m ~PeV}$	RNO-G	In-ice Radio	All Flavors
$\gtrsim 100 { m ~PeV}$	ANITA/PUEO	Balloon Radio	All Flavors
$\gtrsim 100 { m ~PeV}$	Auger/GCOS	Earth-skimming WC	$ u_{ au},ar{ u}_{ au}$ (CC)
$\gtrsim 100 { m ~PeV}$	Beacon	Earth-skimming Radio	$ u_{ au},ar{ u}_{ au}$ (CC)
$\gtrsim 100 { m ~PeV}$	GRAND	Earth-skimming Radio	$\nu_{ au},ar{ u}_{ au}$ (CC)

Snowmass Whitepaper, Beyond the Standard Model effects on Neutrino Flavor, ArXiv: 2203.10811

ПΠ

Neutrino experiments: precision and high energy

Snowmass Whitepaper, Beyond the Standard Model effects on Neutrino Flavor, ArXiv: 2203.10811

	Energy Range	Experiment		Technology	Detected Flavor
[$\lesssim 10^3~{ m GeV}$	JUNO		Liquid scintillator	All Flavors
	$\lesssim 10^3 { m ~GeV}$	DUNE		LArTPC	All Flavors
	$\lesssim 10^3 { m ~GeV}$	THEIA		WbLS	All Flavors
	$\lesssim 10^3 { m ~GeV}$	Super-Kamiokande		Gd-loaded Water C	All Flavors
	$\lesssim 10^4 { m ~GeV}$	Hyper-Kamiokande		Water Cherenkov	All Flavors
	$\lesssim 10^5~{ m GeV}$	ANTARES Deep	Core	e & IceCube Upgrade [$ u_{\mu}, ar{ u}_{\mu} (CC) $
→	$\lesssim 10^6~{ m GeV}$	IceCube/IceCube-Gen	2	Ice Cherenkov	All Flavors
	$\lesssim 10^6~{ m GeV}$	KM3NeT		Sea-Water Cherenkov	All Flavors
	$\lesssim 10^6~{ m GeV}$	Baikal-GVD		Lake-Water Cherenkov	All Flavors
→	$\lesssim 10^6~{ m GeV}$	P-ONE		Sea-Water Cherenkov	All Flavors
	$1-100 \; PeV$	ТАМВО		Earth-skimming WC	$ u_{ au}, ar{ u}_{ au}$ (CC)
	$\gtrsim 1~{ m PeV}$	Trinity		Earth-skimming Image	$ u_{ au}, ar{ u}_{ au} (CC) $
	$\gtrsim 10 \; { m PeV}$	RET-N		Radar echo	All Flavors
	$\gtrsim 10 \; { m PeV}$	IceCube-Gen2		In-ice Radio	All Flavors
	$\gtrsim 10 \; { m PeV}$	ARIANNA-200		On-ice Radio	All Flavors
	$\gtrsim 20~{ m PeV}$	POEMMA		Space Air-shower Image	$ u_{ au},ar{ u}_{ au}$ (CC)
	$\gtrsim 100 { m ~PeV}$	RNO-G		In-ice Radio	All Flavors
	$\gtrsim 100 { m ~PeV}$	ANITA/PUEO		Balloon Radio	All Flavors
	$\gtrsim 100 { m ~PeV}$	Auger/GCOS		Earth-skimming WC	$ u_{ au}, ar{ u}_{ au} (CC) $
	$\gtrsim 100 { m ~PeV}$	Beacon		Earth-skimming Radio	$ u_{ au}, ar{ u}_{ au}$ (CC)
	$\gtrsim 100 { m ~PeV}$	GRAND		Earth-skimming Radio	$\nu_{ au}, ar{ u}_{ au}$ (CC)

ПΠ

IceCube Neutrino Observatory

<u>1st order: understand neutrino properties</u>

The Leptonic Mixing Matrix: status

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, et al., JHEP 2020

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{\rm PMNS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Solar
$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$
 $(i, j = 1, 2, 3, i > j)$ NuFIT 5.3 (2024) $0.801 \rightarrow 0.842$ $0.518 \rightarrow 0.580$ $0.143 \rightarrow 0.155$ $U|_{3\sigma}$ $0.244 \rightarrow 0.500$ $0.498 \rightarrow 0.690$ $0.634 \rightarrow 0.770$ $0.276 \rightarrow 0.521$ $0.473 \rightarrow 0.672$ $0.621 \rightarrow 0.759$

Reactor/accelerator

Atmospheric

.759

The Leptonic Mixing Matrix and Neutrino Mass Ordering 1

Ongoing Measurements and Future Tests

Solar

Atmospheric Neutrinos for Oscillation

Baselines from ~20 km - 12700 km <u>E. R.</u> et al., **NIMA** 2013. J. Leute, <u>E.R.</u> et al, PoS ICRC23. IceCube Coll., **PRL** 2013. IceCube Coll., **J.Phys.G** 2017. IceCube Coll., **PRD** 101 (2020)

 $\cos(\operatorname{zenith}) = -1.0$

Atmospheric Neutrinos for Oscillation

in IceCube/DeepCore

IceCube Coll- PRELIMINARY - submitted to PRL 3,387 days (2012-2021), 150257 neutrino candidates

пп

Atmospheric Neutrinos Oscillation in IceCube/DeepCore

E. R. et al., NIMA 2013. J. Leute, E.R. et al, PoS ICRC23. IceCube Coll., PRL 2013. IceCube Coll., J.Phys.G 2017. IceCube Coll., PRD 101 (2020)

'How it Started ... How it's Going'

пп

Atmospheric Neutrinos Oscillation in IceCube/DeepCore + IceCube Upgrade

ΠП

Atmospheric Neutrinos Oscillation in IceCube/DeepCore + IceCube Upgrade

TUΠ

The Precision Optical Calibration Modules (POCAMs) J. Bedard, E.R. et al., JINST 14 (2019) for IceCube Upgrade

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In production: 30 calibration modules

пп

Target Systematic Uncertainties:

Optical Module Efficiency:
 10% → 1.2%

- Bulk Ice Scattering & Absorption: $5\% \rightarrow 0.5\%$
- Refrozen Borehole Ice:
 Unconstrained → Constrained

Unitarity test: global approach needed

P. Eller et al., PoS ICRC2023

Bayesian posterior densities for the normalizations of individual leptonic mixing matrix elements

ΠП

Unitarity?

<u>2nd</u> order:

neutrinos as a probe of cosmic objects & understand neutrino properties

Cosmic Neutrinos

Fortune favours the brave

Cosmic Neutrinos IceCube milestones

- 11/1

Cosmic Neutrinos

Event Rates in IceCube: For every 1 Cosmic Neutrino, ~10⁹ Atmospheric Muons ~10³ Atmospheric Neutrinos

The cosmic neutrino diffuse signal

The IceCube Coll., **PRL** '20. The IceCube Coll., **ApJ** '22 The IceCube Coll., **Nature** '21

пп

First evidences for source association

IceCube first association: <u>TXS 0506+056</u> - alert event (~290 TeV) and neutrino flare (2015-2016)

The IceCube Coll. and others, Science 361 (2018) The IceCube Coll., Science 361 (2018)

The IceCube Coll., Science 378 (2022)

First evidences for source association

NGC 1068 ($D_L = 10.1 \pm 1.8$ Mpc) Neutrinos from an obscured super massive black hole

P. Padovani, E.R., M. Ajello, et al., accepted in Nature Astronomy, arXiv:2405.20146

p-p & p-γ E_p~100 TeV target γ~ X-ray domain (Corona component)

super massive black hole are the future laboratories

Credit: NASA/JPL-Caltech

NGC1068 is not a Gamma Ray Source

The IceCube Coll., Science 378 (2022)

NGC1068: Neutrinos, Gamma-ray scattering on Dark Matter

Fuzzy DM scenarios: where quantum effects become apparent on large scales

J. M. Cline, M. Puel, JCAP 2023

G. Herrera, A. Ibarra, <u>E.R.</u>, in preparation

NGC1068: Neutrinos, Gamma-ray scattering on Dark Matter

Fuzzy DM scenarios: where quantum effects become apparent on large scales

J. M. Cline, M. Puel, JCAP 2023

G. Herrera, A. Ibarra, <u>E.R.</u>, in preparation

90% C.L. upper limits on the v-DM and e-DM scattering cross sections at the reference energy $E_o = 10$ TeV

NGC1068: searches for neutrino decay

V. B. Valera , D. Fiorillo , I. Esteban, and M. Bustamante, e-Print: 2405.14826

NGC1068: searches for neutrino decay

V. B. Valera , D. Fiorillo , I. Esteban, and M. Bustamante, e-Print: 2405.14826

<u>3rd order:</u>

neutrinos as a probe of cosmic populations & probe of cosmic objects, dark matter, relic neutrinos & understand neutrino properties

mew IceCube results

PRELIMINARY

From 9 years to 13 years of IceCube exposure

Hottest spot and global significance evolution of NGC1068

C. Bellenghi, E. Manao, T. Kontrimas, M. Ha Minh, E.R., M. Wolf (TUM) & the IceCube Coll., in preparation

What about other similar AGN as NGC1068?

Selected a new list of 47 X-ray bright AGN

C. Bellenghi, E. Manao, T. Kontrimas, M. Ha Minh, E.R., M. Wolf (TUM) & the IceCube Coll., in preparation

Emerging of a population of HE neutrino sources?

C. Bellenghi, E. Manao, T. Kontrimas, M. Ha Minh, E.R., M. Wolf (TUM) & the IceCube Coll., in preparation

пп

Neutrino experiments sensitive to cosmic fluxes

We need multiple LV neutrino experiments

L. Schumacher et al., PLEnuM, https://github.com/PLEnuM-group/Plenum

We need multiple LV neutrino experiments

L. Schumacher et al., PLEnuM, https://github.com/PLEnuM-group/Plenum

25 50 75 Test Statistic Gen2: 120 holes, 240 m hole spacing, 80 instruments per hole δ=30° ۲ $\delta = 0$ δ=30[°] $\delta = 0^{\circ}$ 40⁻¹⁰ IceCube (10y, 5o discovery potential) 10⁻¹⁰ IceCube-Gen2 (10y, 5o discovery potential) a Lighting to the IceCube-Gen2 (10y, sensitivity at 90% CL). ഻ഗ Φ = 10⁻¹¹ 10^{-1} 2-4 °ш 10^{−12} 10^{-12} ⁵ 10⁶ 1 Energy [GeV] 10^{3} 10⁴ 10 10⁸ 10⁹ 10^{3} 10⁴ 10⁶ 10 10⁸ 10⁹ 10 10[°] Energy [GeV] Radio Array | Station Optical Array | Sensor IceCube | Laboratory

IceCube Gen2: <u>scale in **volume**</u>

https://icecube-gen2.wisc.edu/science/publications/tdr/

IceCube: 86 holes, 125 m hole spacing, 60 instruments per hole

IceCube Gen2: <u>scale in **volume**</u>

https://icecube-gen2.wisc.edu/science/publications/tdr/

IceCube: 86 holes, 125 m hole spacing, 60 instruments per hole Gen2: 120 holes, 240 m hole spacing, 80 instruments per hole

lceCube (10y, 5σ discovery potential) lceCube-Gen2 (10y, 5σ discovery potentia lceCube-Gen2 (10y, sensitivity at 90% CL)

- There is currently no defined timescale for IceCube-Gen2, although we know that Antarctic infrastructure needs provides an important constraint.
- Currently, we are focused on completing the ongoing IceCube upgrade. Results from that upgrade will inform any future plans for IceCube-Gen2

 $\delta = 30$

 $\delta = 30$

The Pacific Ocean Neutrino Experiment @ Ocean Networks Canada

DATA SOURCES

- Major Observatory
- Coastal Community Observatory
- Coastal Observatory
- 🐠 🛛 Geo-Seismic Sensor (омс)
- Handra & ONC) Geo-Seismic Sensor (Natural Resources Canada & ONC)
- Community Fishers Mobile Assets
 - Subsea Fibre Optic Cable
 Mooring/Buoy

Neutrino Array

😪 🛛 Data Center

- 🔈 Mobile Asset
- AIS Reciever
 - Se RADAR
 - SRADAR (Department of Fisheries and Oceans)
 - SADAR (Dalhousie University)

P-ONE Collaboration & Major Partners on the Map

The Pacific Ocean Neutrino Experiment (P-ONE): pathfinders

2nd pathfinder

1st pathfinder

Strada Comunale Cinthia, Napoli, Italy

RECEIVED: October 26, 2023 REVISED: February 7, 2024 ACCEPTED: March 16, 2024 PUBLISHED: May 28, 2024

 \mathbb{N}

 \bigcirc

 \mathbb{N}

4

Ч

INS

Ы

 \rightarrow

9

Ы

⁸National Institute of Nuclear Physics, Complesso universitario di Monte Sant'Angelo,

The Pacific Ocean Neutrino Experiment (P-ONE)

The Element: A 1 km Tall Instrumented Line Compactly Designed to Fit in a Transport Container

European Research

> Dark Matter Messengers

P-ONE System: Oceanography and Neutrino Experiments

C. Spannfellner et al., PoS ICRC23; F. Henningsenn et al., PoS ICRC23.

- *Integrated System*: Fully integrated assembly, transport, deployment, and anchor system.
- **Advanced Waterproofing**: Connectorless, patented triple waterproof system.
- **Precision Data**: Full waveform readout, subnanosecond timing, self-calibrated.
- **Environmental Monitoring**: Integrated external environmental sensors by design.

P-ONE Array Optimization: Surrogate Model

- C. Haack et al., PoS ICRC23
- Present Optimal Geometry: Calculated for best resolution.
- **Discovery Potential**: Next, optimizing for best discovery potential, including full simulation of all background sources.

Elisa Resconi | 3.06.24

P-ONE as next generation neutrino experiment

ПП

P-ONE as next generation neutrino experiment

Gain through boost of Angular Resolution

Gain through boost of *Timing*

TTS ~ 1.5 - 1.7 nsec

Image Credit: M. Deliyergiyev

R&D on SiPMTs for large area, extreme conditions and **sub-ns**

55

пп

Strategic Roadmap to Unlocking Neutrino Secrets

It takes a village

ТШ

In conclusion

- "The neutrino sector is as intriguing and important as ever." Saul Gonzalez, NSF
- My program covers IceCube/Upgrade, P-ONE, (potentially) JUNO and combined
- New High Energy Neutrinos division at MPP will drive groundbreaking discoveries and profound insights into the universe.
- Very natural synergy with MAGIC/LST/Fermi and the photosensors tradition.
- Privileged environment, specialized workshops & people, advanced semiconductor lab for high-performance detectors.

Backup

NGC1068: searches for neutrino decay with multiple sources

V. B. Valera , D. Fiorillo , I. Esteban, and M. Bustamante, e-Print: 2405.14826

(and detectors)

ΠП

Conclusion: The View from NSF

- We must maximally exploit existing and new facilities
- There is a shift in the center of gravity of the field from collider techniques to cosmo/astro techniques. We heard that message and are thinking about how to follow that shift to these scientific opportunities.
 - This is healthy because it means the particle physics is dynamic, chasing the science, not the tools themselves. (see EPP2024 charge!)
- However, much community interest in Higgs factory and muon collider development
- There are opportunities for instrumentation development and cyberinfrastructure tools by leveraging emerging technologies and allied fields
- The neutrino sector is as intriguing and important as ever.
- There are budgetary constraints and technically-limited infrastructure constraints, so need to be realistic about what can be done when and where.
- We are excited about the future of particle physics!

NSF Perspectives on P5 Saul Gonzalez Division Director Division of Physics National Science Foundation HEPAP Meeting - May 9, 2024

P5 Recommendation 2 (continued)

P5: Construct a portfolio of major projects that collectively study nearly all fundamental constituents of our universe and their interactions, as well as how those interactions determine both the cosmic past and future. [in priority order:]

e) IceCube-Gen2 for study of neutrino properties using non-beam neutrinos complementary to DUNE and for indirect detection of dark matter covering higher mass ranges using neutrinos as a tool

NSF perspective:

- There is currently no defined timescale for IceCube-Gen2, although we know that Antarctic infrastructure needs provides an important constraint.
- Currently, we are focused on completing the ongoing IceCube upgrade. Results from that upgrade will inform any future plans for IceCube-Gen2

NSF Perspectives on P5 Saul Gonzalez Division Director Division of Physics National Science Foundation HEPAP Meeting - May 9, 2024

P5 Recommendation 3

P5: Create an improved balance between small-, medium-, and large-scale projects to open new scientific opportunities and maximize their results, enhance workforce development, promote creativity, and compete on the world stage.

b) Continue Mid-Scale Research Infrastructure (MSRI) and Major Research Instrumentation (MRI) programs as a critical component of the NSF research and project portfolio.

NSF perspective:

 We agree. The FY 2025 President's Budget Request for NSF includes requests for MRI, MSRI-1, and MSRI-2. The Division has benefitted from these programs.

Photo Credits: University of Michigan

NGC1068: An Archetype of Obscured Active Galactic Nuclei

P. Padovani, E.R., M. Ajello, et al., accepted in Nature Astronomy, arXiv:2405.20146

	r r		1	Þ	
			$(0.1-10~{ m GeV})$	$(1.5-15~{ m TeV})$	
	Star formation	$> \mathrm{kpc}$	$\sim 10^{40.9}$	$\lesssim 10^{40.1}$	
	Jet	$\sim { m kpc}$	$< 10^{41.7}$ (M87-like)	$< 10^{40.9}$	
⊢→	Outflow (UFO)	$\sim m pc$	$< 10^{41.2}$	$< 10^{40.4}$	
	BH vicinity	$\sim 0.03 \text{ mpc} (\sim 50 R_s)$?	?	
		Total	$\lesssim 10^{41.9}$	$\ll 10^{41.1}$	
		Observed	$10^{40.92\pm0.03}$	$10^{42.1\pm0.2}$	

All powers in erg s⁻¹; R_s is the Schwarzschild radius.

The Galactic plane in neutrinos

The IceCube Coll., Science 380 (2023)

 10^{7}

The Galactic plane in neutrinos

The IceCube Coll., Science 380 (2023)

Elisa Resconi | 10.05.24

IceCube: DeepCore subarray

IC80 + 12 strings DeepCore

V - vertex

<u>E.R</u>., from DeepCore design study meeting in Stockholm, 2008

The IceCube Coll., Science 2022

Maximum likelihood technique, likelihood ratio hypothesis test

S: point-like neutrino emission (location, energy spectrum) B: atmospheric & diffuse astrophysical neutrinos

Observables: muon direction, uncertainty and energy $\hat{d} = (\hat{\alpha}, \hat{\delta}) \hat{\sigma} \hat{c}_{\mu}$

$$\mathcal{L}\left(\boldsymbol{\theta} \,|\, \boldsymbol{x}, \, N\right) = f\left(\boldsymbol{x}, \, N \,|\, \boldsymbol{\theta}\right) = \prod_{i=1}^{N} f\left(\boldsymbol{x}_{i} \,|\, \boldsymbol{\theta}\right)$$
$$\boldsymbol{x}_{i} = \left(\boldsymbol{\hat{d}}_{i}, \, \hat{\sigma}_{i}, \, \hat{E}_{\mu, i}\right). \qquad \boldsymbol{\Phi}_{\nu_{\mu} + \bar{\nu}_{\mu}}(E_{\nu}) \;=\; \boldsymbol{\Phi}_{0} \cdot \left(E_{\nu}/E_{0}\right)^{-\gamma}$$

$$\mathcal{L} \left(\mu_{\mathrm{ns}}, \gamma \mid \boldsymbol{x}, N \right) = \prod_{i=1}^{N} \left\{ \frac{\mu_{\mathrm{ns}}}{N} \cdot f_{\mathrm{S}} \left(\boldsymbol{x}_{i} \mid \gamma \right) + \left(1 - \frac{\mu_{\mathrm{ns}}}{N} \right) \cdot f_{\mathrm{B}} \left(\boldsymbol{x}_{i} \right) \right\}$$
$$f_{\mathrm{B}}(\boldsymbol{x}_{i}) = f_{\mathrm{B}}(\hat{E}_{\mu,i}, \, \boldsymbol{\hat{d}}_{i}, \, \hat{\sigma}_{i}) = \frac{1}{2\pi} f_{\mathrm{B}}(\hat{E}_{\mu,i}, \, \sin \hat{\delta}_{i}, \, \hat{\sigma}_{i})$$
$$f_{\mathrm{S}} \left(\hat{E}_{\mu,i}, \, \boldsymbol{\hat{d}}_{i}, \, \hat{\sigma}_{i} \mid \sin \delta_{\mathrm{src}}, \, \gamma \right) = \frac{1}{2\pi} \sin \hat{\psi}_{i} \, f_{\mathrm{S}} \left(\hat{E}_{\mu,i}, \, \hat{\psi}_{i}, \, \hat{\sigma}_{i} \mid \sin \delta_{\mathrm{src}}, \, \gamma \right)$$

ПП

The IceCube Coll., Science 2022

Maximum likelihood technique, likelihood ratio hypothesis test

S: point-like neutrino emission (location, energy spectrum) B: atmospheric & diffuse astrophysical neutrinos

Observables: muon direction, uncertainty and energy $\hat{d} = (\hat{lpha}, \, \hat{\delta}) \, \hat{\sigma} \, \hat{E}_{\mu}$

$$\begin{split} f_{\rm S}\left(\hat{E}_{\mu,i},\,\hat{\boldsymbol{d}}_{i},\,\hat{\sigma}_{i}\,|\,\sin\delta_{\rm src},\,\gamma\right) &\approx \frac{1}{2\pi\,\sin\hat{\psi}_{i}}\,f_{\rm S}\left(\hat{\psi}_{i}\,|\,\hat{E}_{\mu,i},\,\hat{\sigma}_{i},\,\gamma\right) \cdot f_{\rm S}\left(\hat{E}_{\mu,i}\,|\,\sin\delta_{\rm src},\,\gamma\right) \\ f_{\rm B}(\hat{\boldsymbol{E}}_{\mu,\,i},\,\hat{\boldsymbol{d}}_{i},\,\hat{\sigma}_{i}) &\approx \frac{1}{2\pi}f_{\rm B}(\hat{E}_{\mu,\,i},\,\sin\hat{\delta}_{i}). \end{split}$$

angular error estimated using Boosted Decision Trees

pdfs non-parametrically via kernel density estimation (KDE) from Monte Carlo

$$TS(\boldsymbol{d}_{\mathrm{src}}) \equiv -2 \times \log\left(\boldsymbol{\Lambda}\right) = -2 \times \log\left(\frac{\mathcal{L}(\mu_{\mathrm{ns}} = 0 \,|\, \boldsymbol{x})}{\sup_{\mu_{\mathrm{ns}},\,\gamma} \mathcal{L}(\mu_{\mathrm{ns}},\,\gamma,\,\boldsymbol{d}_{\mathrm{src}} \,|\, \boldsymbol{x})}\right)$$

The IceCube Coll., Science 2022

ТΠ

ТШ

The Point Source Search: analysis method

The IceCube Coll., Science 2022

The IceCube Coll., Science 2022

Muon Energy Estimation Using Deep Learning

ПΠ
The Point Source Search: analysis method

The IceCube Coll., Science 2022

Muon Energy Estimation Using Deep Learning

πп

The PMNS Mixing Matrix NuFIT 5.3 (2024)

ТШ

Atmospheric Reactor/accelerator Solar Majorana Phases

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} e^{i\eta_1} & 0 & 0 \\ 0 & e^{i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

		Normal Orc	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 9.1)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 heta_{12}$	$0.307\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.344$	$0.307\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.344$
spheric data	$ heta_{12}/^{\circ}$	$33.67\substack{+0.73 \\ -0.71}$	$31.61 \rightarrow 35.94$	$33.67\substack{+0.73 \\ -0.71}$	$31.61 \rightarrow 35.94$
	$\sin^2 heta_{23}$	$0.454\substack{+0.019\\-0.016}$	$0.411 \rightarrow 0.606$	$0.568\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.611$
	$ heta_{23}/^\circ$	$42.3^{+1.1}_{-0.9}$	$39.9 \rightarrow 51.1$	$48.9^{+0.9}_{-1.2}$	$39.9 \rightarrow 51.4$
utmo	$\sin^2 heta_{13}$	$0.02224\substack{+0.00056\\-0.00057}$	0.02047 o 0.02397	$0.02222\substack{+0.00069\\-0.00057}$	$0.02049 \rightarrow 0.02420$
SK 8	$ heta_{13}/^{\circ}$	$8.58\substack{+0.11\\-0.11}$	$8.23 \rightarrow 8.91$	$8.57\substack{+0.13 \\ -0.11}$	$8.23 \rightarrow 8.95$
with	$\delta_{ m CP}/^{\circ}$	232^{+39}_{-25}	$139 \rightarrow 350$	273^{+24}_{-26}	$195 \rightarrow 342$
	${\Delta m^2_{21}\over 10^{-5}~{ m eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.81 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	6.81 ightarrow 8.03
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.505^{+0.024}_{-0.026}$	$+2.426 \rightarrow +2.586$	$-2.487^{+0.027}_{-0.024}$	$-2.566 \rightarrow -2.407$

Neutrinos gaining mass due to refraction on ultralight DM

Manibrata Sen and Alexei Y. Smirnov JCAP 01(2024)040

Fuzzy DM scenarios: where quantum effects become apparent on large scales

 $m_{\chi} = 3 \times 10^{-4} \text{eV}$

The Pacific Ocean Neutrino Experiment (P-ONE)

@Ocean Networks Canada: state-of-the-art underwater observatories and real-time data capabilities Cabled ocean observatory: 800 km loop of fibre-optic cables in operation

the world's largest undersea observatory network

P-ONE Collaboration, Nature Astron. 2020

пп

The Pacific Ocean Neutrino Experiment (P-ONE)

July'23 ONC sea expedition

The Pacific Ocean Neutrino Experiment (P-ONE)

https://data.oceannetworks.ca/home

ТШ

$$L\left(\boldsymbol{\theta_s} \mid \hat{\boldsymbol{E}}, \, \hat{\boldsymbol{\sigma}}, \, \hat{\boldsymbol{d}}\right) = \prod_{i=1}^{N} \left\{ \frac{\mu_s}{N} \times \frac{1}{2\pi \hat{\sigma}_i^2} \exp\left(-\frac{1}{2\hat{\sigma}_i^2} \left| \hat{\boldsymbol{d}}_i - \boldsymbol{d}_s \right|^2\right) f_s\left(\hat{E}_i; \, \gamma\right) + \left(1 - \frac{\mu_s}{N}\right) \times f_b\left(\hat{E}_i, \, \hat{\boldsymbol{d}}_i\right) \right\}$$

Braun et al., Astropart. Phys. 29 (2008) 299305 **2-D Gaussian (until '20)**

NEW: Connectorless, full waveform readout

The P-ONE Coll., Nature Astron. 2020

ТШ