

Reina Maruyama Yale University

MPP Colloquium Max Planck Institut Für Physik May 17, 2024

Research @ Yale

- Physics Beyond the Standard Model of Particle Physics
- Neutrinos and Dark Matter

- Is DAMA really seeing dark matter?
- Does dark matter = axions?

http://maruyama-lab.yale.edu

- Neutrinoless double beta decay
- Are neutrinos their own anti-particles? Are they Majorana particles?

Neutrinoless Double Beta Decay

Open Questions

Where do neutrino masses come from?

What is the origin of leptonic mixing?

Are neutrinos their own antiparticles?

Major discoveries ahead

 m_3^2

 $m_2^2_{-}$

 $m_1^2_{-}$

0

Understanding Neutrino Mass from Double Beta Decay

Nuclei as a laboratory to study lepton number violation at low energies

2νββ

Proposed in 1935 by Maria Goeppert-Mayer **Observed in several nuclei**

 $T_{1/2} \sim 10^{19} - 10^{21} \, \text{yrs}$

$$\Gamma_{2\nu} = G_{2\nu} \mid M_{2\nu} \mid^2$$

0νββ

Proposed in 1937 by Ettore Majorana Not observed yet

 $T_{1/2} \ge 10^{25} y$

$$\Gamma_{0\nu} = G_{0\nu} \mid M_{0\nu} \mid^2 \left\langle m_{\beta\beta} \right\rangle^2$$

0ν β β would imply

- lepton number non-conservation
- Majorana nature of neutrinos

Neutrinoless Double Beta Decay (0vßß)

Energy peak is necessary and sufficient signature to claim a discovery. Additional signatures from signal topology etc

Ονββ Searches

Discovery Sensitivity of CUORE and CUPID

2023 Nuclear Physics Long Range Plan

CUORE → **CUPID** Collaboration

EGLI STUDI

We would like to acknowledge support from the U.S. Department of **Energy Office of Science** contract No. DE-SC0019368 and DE-SC0012654 and the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1752134.

History of Bolometer Experiments

CUORE is in a long series of experiments: a few grams to 742 kg of detector material

Brofferio, C. and Dell'Oro, S., Rev. Sci. Inst. 89, 121501 (2018)

Experimental Site

Unique cryogenic infrastructure.

11

CUORE - Coldest Cubic Meter in the Known Univers

CUORE cryostat

- Multistage cryogen-free
- cryostat
- Cooling systems: fast cooling
- system, Pulse Tubes (PTs), and
- Dilution Unit (DU) ullet
- $\sim 15 \text{ tons } @ < 4 \text{ K}$
- ~ 3 tons @ < 50 mK
- Mechanical vibration isolation
- Active noise cancelling

CUORE (passive) shielding

- Roman Pb shielding in cryostat
- External Pb shielding ullet
- H₃BO₃ panels + polyethylene \bullet

Bolometric Search for 0vββ

$^{130}\text{Te} \rightarrow ^{130}\text{Xe} + 2\text{e}^{-}$

Q = (2527.518 +/- 0.013) keV

Time (ms)

single hit, monochromatic event

CUORE Detector

0

0

1. Mit

CUORE Data

Cooldown tarted in Dec 2016

~1 month cool down

First data in Jan 2017

Downtime Physics Calibration Setup

CUORE Data Taking

- Stable operations and data taking
- 984/988 channels active (> 99%),
- uptime ~90%
- >2.2 ton-yr high-quality data collected

CUORE Run Plan

Goal: 3 ton-yr in 2025

CUORE 1-tonne Year Spectrum

Adams, D.Q. et al. (CUORE Collaboration), *Nature* **604**, 53-58 (2022)

Background in Region of Interest (ROI)

α region

fit flat background in [2650,3100] keV 1.40(2) 10⁻² counts/(keV kg yr)

$Q_{\beta\beta}$ region

fit background + 60 Co peak in [2490,2575] keV 1.49(4) 10⁻² counts/(keV kg yr)

source

~90% of the background in the ROI is given by degraded alpha interactions

Muons are the next dominant background source

CUORE uses ¹³⁰Te with 34% natural isotopic abundance, $Q_{\beta\beta}$ (2528 keV)

Adams, D.Q. et al. (CUORE Collaboration), *Nature* **604**, 53-58 (2022)

17

CUORE Fit

110日 Counts / (2.5 keV) 100 90 80 70 60 50

40

30

No evidence of 0vββ

Best fit rate: (0.9 ± 1.4)x10⁻²⁶ yr

Background index = 1.49(4)x10⁻² cts/keV/kg/yr

 $T^{0v_{1/2}} > 2.2 \times 10^{25}$ yr at 90% C.L.

Adams, D.Q. et al. (CUORE Collaboration), *Nature* **604**, 53-58 (2022)

CUORE 0vßß Limit and Sensitivity

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) ||M^{0\nu}|^2 \frac{|\langle m_{\beta\beta}\rangle|^2}{m_e^2}$$

- Phase Space Factor •
- Nuclear Matrix element
- Effective Majorona mass: a weighted ۲ sum of different v flavors masses

CUORE 1 Tonne Limit: m_{ββ}< 90-305 meV

CUORE Sensitivity (5 yrs) $m_{\beta\beta} < 50 - 130 \text{ meV}$

CUPID Detector

Single Detector Li₂¹⁰⁰MoO4, 45x45x45 mm, 280 g Ge light detector as in CUPID-Mo, CUPID-0

Detector Array

~240 kg of ¹⁰⁰Mo with >95% enrichment

~1.6.10²⁷¹⁰⁰Mo atoms

57 towers of 14 floors with 2 crystals each, 1596 crystals

Opportunity to deploy multiple isotopes, phased deployment

Gravity stacked structure Crystals thermally interconnected

CUORE ¹³⁰Te

No PID **Q** = 2527 keV < 2615 keV

¹⁰⁰Mo **Q-value: 3034 keV**: β/γ background significantly reduced

Measure heat and light from energy deposition

Heat is particle independent, but light yield depends on particle type

Actively discriminate α using measured light yield

CUPID Sensitivity to 0vßß

Baseline

- Mass: 450 kg (240 Kg) of $Li_2^{100}MoO_4(^{100}Mo)$ for 10 yrs
- Energy resolution: 5 keV FWHM
- Background: 10-4 cts/keV.kg.yr
- Discovery sensitivity $T_{1/2} > 1.1 \times 10^{27}$ yr (3 σ)
- Conservative, limited R&D

Reach

- R&D for further background reduction by radio purity and reduce pileup background
- Discovery sensitivity $T_{1/2} > 2 \times 10^{27}$ yr (3 σ)

1-Ton

- 1000 kg of ¹⁰⁰Mo
- Discovery sensitivity $T_{1/2} > 8 \times 10^{27}$ yr (3 σ)

CUPID-1T is within technical reach, limited by timeline and cost

CUPID Sensitivity to 0vββ

CUPID Baseline

- Mass: 472 kg (240 Kg) of $Li_{2}^{100}MoO_{4}(^{100}Mo)$
- **10** yr runtime
- Energy resolution: 5 keV FWHM
- Background: **10**-4 cts/keV.kg.yr

CUPID Baseline Discovery Sensitivity $T_{1/2} > 1.1 \times 10^{27} \text{ yrs} (3\sigma)$ m_{ββ} ~ 12-20 meV

CUPID aims to cover the inverted hierarchy and a fraction of normal ordering

 10^{3}

10²

10

10⁻¹

 10^{-1}

 $m_{
m Beta}$ (meV)

Axions are well motivated

J. Ouellet, Aspen 2022

HAYSTAC's Aim: Going high

- Challenges:
 - Photon detection, noise

• Scan rate:
$$V \propto v^{-2}$$
, $\frac{dv}{dt} \propto V^2$, $\frac{dv}{dt} \propto v^{-4}$

Innovation testbed for axion searches in QCD band > 10 μ eV (~2.5 GHz)

Borsanyi et al (2016) PQ symmetry broken after inflation: $m_a > 10 \mu eV$

Klaer & Moore (2017); $26.2 \pm 3.4 \mu eV$

Buschmann, et al. (2022): 40 µeV [65 \pm 6 μ eV, q=1; scale invariant spectrum]

* In $\Omega_A \sim f_A^{\alpha}$, the best fit $\alpha = 1.24$ ± 0.04 Rather than analytical 1.187

Detecting Axions: Sikivie's Haloscope

Haloscope principle: P. Sikivie, *Phys. Rev. Lett.*, **51**, 1415 (1983) HAYSTAC detector: Nucl. Instrum. Methods A 854, 11 (2017)

Interaction of interest: $\mathcal{L} \supset g_{a\gamma\gamma} a E \cdot B$

HAYSTAC

ADMX

Detecting Axions: the Haloscope Principle

Physics Today 72, 6, 48 (2019)

Scaling:

Signal power:

$$P = \kappa \mathcal{G} V \frac{Q}{m_a} \rho_a g_{a\gamma}^2 B_e^2$$

 $m_a = (4.1 \ \mu eV) \times (f / GHz)$ $(f)_{TM_{010}} = \frac{2.405}{2\pi a \sqrt{\mu_0 \epsilon_0}} = \frac{0.115}{a} \text{ GHz}$

Standard quantum limit: $kT_N \ge hv$ For f = 10 GHz, cavity of ~1.15 cm

HAYSTAC Experiment

Microwave cavity

Haysta**c**

~60 mK

HAYSTAC's Innovations: Phase 1

- Use JPAs to lower the system noise
- Tunable LC resonators
- Near Quantum Limited Noise
- Can Operate in Phase Sensitive mode

Brubaker et al., PRL 118 061302 (2017)

HAYSTAC Innovation Phase 2: Squeezing

- 2 JPAs in tandem can even beat the Quantum Limit
- Squeezed State Receiver

<u>Malnou et al., Phys. Rev. X 9, 021023 (2019)</u>

HAYSTAC: Phase 2

- Dark matter search enhanced by quantum squeezing
- Josephson Parametric Amplifier source squeezed states
- Squeezed state receiver operation
- -4dB noise reduction \bullet
- x2 speedup \bullet

Reina Maruyama, Yale University

Backes et al., Nature, 590, 238 (2021)

HAYSTAC: Results so far

- Jewell et al., PRD, 107, 072007 (2023)

Haysta**c**

HAYSTAC: Phase 2 Projected

- Jewell et al., PRD, 107, 072007 (2023)

Haystack

HAYSTAC & ALPHA: Going higher

- Axion searches in QCD band > 10 μ eV -> (~2.5 GHz)
- Challenges:
 - Photon detection, noise
 - Scan rate: $V \propto v^{-2}$, $\frac{dv}{dt} \propto V^2$, $\frac{dv}{dt} \propto v^{-4}$

Borsanyi et al (2016) PQ symmetry broken after inflation: $m_a > 10 \mu eV$

Klaer & Moore (2017); $26.2 \pm 3.4 \mu eV$

Buschmann, et al. (2022): 40 µeV [65 \pm 6 μ eV, q=1; scale invariant spectrum]

* In $\Omega_A \sim f_A^{\alpha}$, the best fit $\alpha = 1.24$ ± 0.04 Rather than analytical 1.187

YALE (HOST), UC BERKELEY, CU-BOULDER, & JOHNS HOPKINS

https://axion-dm.yale.edu/

YALE (HOST), ASU, UC BERKELEY, CAMBRIDGE, COLORADO (BOULDER), ICELAND, ITMO, JHU, MIT, ORNL, STOCKHOLM, AND WELLESLEY.

- Recent calculations: ~15 GHz/65 µeV (Buschmann+ 2022)

- Out of reach of conventional cavities but accessible to plasma haloscope
- Construction of **ALPHA** underway, experiment hosted at Yale

YALE (HOST); ASU; UC BERKELEY; CAMBRIDGE; COLORADO (BOULDER); 38 ICELAND; ITMO; JHU; MIT; ORNL; STOCKHOLM, WELLESLEY.

Concept: Tunable Axion Plasma Haloscopes

- Idea in Lawson, Millar, Pancaldi, Vitagliano & Wilczek, Phys. Rev. Lett. 123 (2019)
- Allows for larger volumes/higher power for high frequencies than traditional approaches
- + HAYSTAC-like quantum detectors for readout

Kowit et al, Phys.Rev.Applied 20 (2023)

Large mass \rightarrow small volume

Credit: J. Gudmundsson

 $m_a = (4.1 \ \mu eV) \times (f / GHz)$

0.1152.405GHz $(f)_{TM_{010}}$ $2\pi a \sqrt{\mu_0 \epsilon_0}$ a

For a = 1.15 cm, we get f = 10 GHz

Solution: plasmonic resonance

Sikivie (1983), PRL

Credit: J. Gudmundsson

Lawson et al. (2019), PRL

41

ALPHA resonators will require incorporating Photonic Band Gap structues

Site: Wright Lab @ Yale

Yale Wright Laboratory

Magnet

Magnet

Next set of innovations

Multi-Rod Cavity

Same Radius but extend >6GHz

Credit: M. Jewell

Exploring the Invisible Universe

Advancing frontiers of nuclear, particle, and astrophysics including studies of **neutrinos**; searches for **dark matter**; understanding **matter**; exploration of **quantum science** and observations of **the early Universe**.

https://wlab.yale.edu

Developing Tools for Discoveries

Training Future Scientists

- - lepton number violation

ohn Barton Build ark Matter Research

