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Recapitulation of the previous lecture

Bipolar transistor as an example of a signal amplifier
A bipolar transistor is an npn or pnp junction with 3 terminals.

=̂

(Kollektor)

(Basis)

(Emitter)

In Sperrrichtung betrieben

In Durchgangsrichtung betrieben

Polarity of an npn transistor
Increasing UBE reduces the voltage
between the base and collector,
causing diode BC to conduct more
and thus allowing more current to
flow from the emitter than has
flowed into the base.
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Input and out put characteristics of a bipolar transistor

Tietze, Schenk, Halbleiterschaltungstechnik, 1993
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Recapitulation of the previous lecture

Concept of small-signal amplification

A bipolar transistor is a current amplifier with the current
amplification B = IC

IB
.

The value of B depends on the values of the applied voltages.

In practice, one is interested in the amplification of small signals. To
achieve this, these small signals are superimposed on a DC voltage
that sets the operating point of the transistor.

Since B fluctuates from one transistor to another, the amplification is
determined by the circuitry of the transistor, as explained in the
following examples.
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Recapitulation of the previous lecture
Basic equations for small-signal amplification

I
B

I
C

U
BE

U
CE

C

B

E

Goal: Amplification of small, time-varying signals.

dIB =
∂IB
∂UBE

∣∣∣∣
UCE

· dUBE +
∂IB
∂UCE

∣∣∣∣
UBE

· dUCE ,

dIC =
∂IC
∂UBE

∣∣∣∣
UCE

· dUBE +
∂IC
∂UCE

∣∣∣∣
UBE

· dUCE .

1
rBE

:= ∂IB
∂UBE

|UCE
is small. ∂IB

∂UCE
|UBE

≈ 0.

Slope S := ∂IC
∂UBE

|UCE is large. 1
rCE

:= ∂IC
∂UCE

|UBE is small.

⇒ dIB =
1

rBE
· dUBE ,

dIC = S · dUBE +
1

rCE
· dUCE .
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Recapitulation of the previous lecture

1st Example: Emitter circuit with current feedback
U

V

Eingangs−

spannung

(Versorgungsspannung)

(Ausgangsspannung)
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Recapitulation of the previous lecture

Calculation of small-signal amplification

Equivalent circuit for calculating the small-signal amplification A := dUa
dUe

U
V

R
C

R
E

r
CE

r
BE

U
e

C
I

E
I

U
a

+

dIE =
dUe

rBE + RE
≈

rBE≪RE

dUe

RE
.

dIC =
d(UV −Ua)

RC
−dUa

RC
dUV=0

.

dIE = dIC ⇒ A =
dUa

dUe
= −RC

RE
.

The circuit is inverting with a small-signal amplification that depends
only on the configuration of the transistor, namely RC and RE .
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Recapitulation of the previous lecture

2nd Example: Emitter circuit with voltage feedback
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Recapitulation of the previous lecture
Calculation of small-signal amplification
Equivalent circuit for calculating the small-signal amplification A := dUa

dUe

UV

RC

r CE

r BE

Ua

UE

RN

R1

NI

eI

+
Sehr groß, da

Diode in Sperrichtung

Sehr klein, da Diode in Durchlassrichtung,

B wie auf Erde.

dUe = R1dIe , dUa = RN dIN = −RN dIE .

⇒ A =
dUa

dUe
=

−RN

R1
.

The circuit is inverting with a small-signal amplification that depends
only on the configuration of the transistor, namely RN and R1.
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Recapitulation of the previous lecture

Operating point adjustment

Spannungsteiler zur Fest−

legung des Arbeitspunktes

des Transistors

Kapazitives Auskoppeln,

Kapazitives Einkoppeln des Signals, um den

Arbeitspunkt nicht zu verschieben. Möglich, da

man nur dU  verstärken will.e

um nur dU  zu sehen.a
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Operation of a differential amplifier

Constant current source at
the emitter. ⇒ dIk = 0.

Internal resistance of the
constant current source: rk .

Ik = IC1 + IC2 ⇒ dIC1 = −dIC2.

So dUa1 = −dUa2.

Also
dUe1 = dUBE1 = −dUBE2 = −dUe2.

UD := Ue1 −Ue2.
dUe1 = d(Ue1 −Ue2 +Ue2)

= dUD + dUe2 = dUD − dUe1,
thus dUD = 1

2dUe1.

⇒ Differential amplification AD = dUa1
dUD

AD = dUa1
2dUBE1

= −1
2S (RC ||rCE ).

Since S is large, AD is also large.

Besides the differential amplification, there is also a much smaller
common-mode amplification ACM := dUa1

d(Ue1+Ue2)/2
= −1

2
RC
rk

, which
immediately follows from the formula for the amplification of the emitter
circuit with current feedback.
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Alternative to bip. transistors: field-effect transistors

Construction of an n-channel junction field-effect transistor

S: Source.

G: Gate.

D: Drain. −

−

−

−

Control of the size of the charge
carrier-free zone via the value of the
voltage UGS .

Thickness of the charge carrier-free
zone determines the resistance
between drain and source.

Advantage of field-effect transistors
over bipolar transistors: Lower power
consumption, as the control is done
via the applied electric field and not
via a current.
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Metal-oxid-semiconductor field-effect transistor

Structure forms a capacitor from gate terminal, dielectric, and bulk terminal.
Application of positive voltage between gate and bulk charges the capacitor.
Electric field causes migration of minority carriers (electrons in p-silicon) to the junction and
recombination with majority carriers (defect electrons in p-silicon), known as depletion.
Space charge region forms at the junction with negative space charge.
At threshold voltage Uth , displacement of majority carriers becomes significant, limiting recombination.
Accumulation of minority carriers results in near-inversion of p-doped substrate close to the oxide,
known as strong inversion
Increased gate voltage induces band bending of conduction and valence bands at the junction in band
model.
Fermi level shifts closer to the conduction band than the valence band, inverting the semiconductor
material.
Formed thin n-type conducting channel connects source and drain n-regions, allowing charge carriers
to flow (almost) unimpeded from source to drain.
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Operational amplifiers

Operational amplifiers are broadband differential amplifiers with high
gain and high input impedance.

Operational amplifiers are available as integrated circuits made of
bipolar and field-effect transistors.

Input stage designed as a
differential amplifier, hence two
inputs (+ and -).

Positive and negative supply
voltage required to drive the
inputs and outputs positively and
negatively.

Open-loop gain:

AD :=
dUa

dUD
.
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Characteristic of an operational amplifier

Offset voltage U0 adjustable in
most operational amplifiers.

Linear dependency of Ua on UD

in a small range of UD around
U0.

Constant output voltage outside
of this range (amplifier
saturation).
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Principle of negative feedback

Ua = AD(Ue − kUa) ⇔ Ua = AD
1+kAD

Ue ≈
AD→∞

1
kUe .

UP = Ue , UN = kUa , |Ua |<const. Thus,

|UP −UN | = Ua

AD
→

AD→∞
0,

i.e., UP = UN .
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Non-inverting amplifier

Ue = UP = UN =
R1

R1 + RN
Ua

⇔ Ua =

(
1 +

RN

R1

)
Ue .

Amplification is positive.

Value of the amplification is fully determined by the choice of RN and
R1.
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Voltage follower

Ua = Ue .

Small output impedance, i.e.,
behaves like a voltage source.

Use of this circuit as an
impedance converter.
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Inverting amplifier

UP = UN = 0.

⇒ Ua = RN · IN = RN (−I1) = −RN
Ue

R1
= −RN

R1
Ue .

Amplification is negative.

Value of the amplification is fully determined by the choice of RN and
R1.
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Pulse shaping

Introductory Example: Signal Pulse of a Cylindrical Drift Tube

Signalverlauf

ohne Impulsformung

t

Signalverlauf nach einem Differenzierglied

Pulse shaping with a differentiator

Retains the information of the
signal start time.

Significantly reduces the dead
time of the tube compared to
the case without pulse shaping.
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Low-pass and high-pass filters

Low-Pass High-Pass

C
R

U U
e a U

e
U

a
RC

Ua =
1

iωC

R + 1
iωC

Ue

=
1

1 + iωRC
Ue .

Ua =
R

R + 1
iωC

Ue

=
1

1 + 1
iωRC

Ue .

ω → 0: Ua → Ue .

ω → ∞: Ua → 0.

ω → 0: Ua → 0.

ω → ∞: Ua → Ue .
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Low-pass and high-pass filters
Low-Pass High-Pass

C
R

U U
e a U

e
U

a
RC

Ua =
1

1 + iωRC
Ue . Ua =

1

1 + 1
iωRC

Ue .

3dB Cutoff Frequency

1

|1 + iωRC |2
=

1

2
⇔ ω =

1

RC
.

ω ≫ 1
RC : Ua ≈ 1

iωRCUe = Ûe(ω)
iωRC e iωt ,

so Ua ≈ 1
RC

∫
Uedt.

Integrating above the cutoff
frequency.

3dB Cutoff Frequency

1∣∣1 + 1
iωRC

∣∣2 =
1

2
⇔ ω =

1

RC

ω ≪ 1
RC :

Ua ≈ iωRCUe = iωRCÛee
iωt , so

Ua ≈ RC dUe
dt .

Differentiating above the cutoff
frequency.
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Behavior of a low pass filter

C
R

U U
e a

1st possibility: Use of complex impedances
and a Fourier transformation from the
frequency to the time domain.

2nd possibility: Solving the following differential equation.

Ua =
Q

C
⇒ dUa

dt
=

1

C
I .

Ue = UR +Ua = R · I +Ua= RC
dUa

dt
+Ua .
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Low pass: behavior with a rectangular pulse
e

U

0
U

∆ t t0

Ue(t) =

{
U0 (t ∈ [0,∆t ]),

0 otherwise.

t ≤ 0: 0 = RC dUa
dt +Ua , hence Ua = 0.

t ∈ (0,∆t): U0 = RC
dUa

dt
+Ua

⇔ U0 −Ua = RC
dUa

dt
⇔

t∫
0

1

RC
dt ′ =

U (t)∫
0

dUa

U0 −Ua

⇔ − t

RC
= ln

U0 −Ua(t)

U0
⇔ e−

1
RC

t =
U0 −Ua(t)

U0

⇔ Ua(t) = U0(1− e−
1

RC
t).

t ≥ ∆t: dUa
dt = − 1

RCUa , hence Ua(t) = Ua(∆t)e−
1

RC
(t−∆t).
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Low pass: behavior with a rectangular pulse

Ua

U0

t>>RC∆

t<<RC∆

∆ t t

∆t ≫ RC : Ua(t → ∆t − 0) ≈ U0.

∆t ≪ RC : Ua(t) ≈ U0
t

RC for t ∈ (0,∆t).
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Behavior of a high pass filter

U
e

U
a

RC
Ua = R · I = RC

d(Ue −Ua)

dt
= RC

dUe

dt
− RC

dUa

dt
.

Choose Ue as before, as a rectangular pulse.
t ≤ 0: Ua(t) = 0.

t ∈ (0,∆t): Ua(t) = −RC dUa
dt , hence Ua(t) = Ua(0)e

− t
RC = U0e

− t
RC .

ϵ → 0 + 0 : t ∈ [∆t ,∆t + ϵ): Ue(t) = U0

(
1− t−∆t

ϵ

)
, hence dUe

dt = −U0
ϵ .

Ua +
RC

ϵ
U0 = −RC

dUa

dt

⇔ ϵUa + RCU0 = −ϵRC
dUa

dt

⇔
ϵ→0

U0 = −ϵ
dUa

dt
, U0ϵ = −ϵ [Ua(∆t + ϵ)−Ua(∆t)]

⇔ Ua(∆t + ϵ) = Ua(∆t)−U0= U0

(
e−

∆t
RC − 1

)
t ≥ ∆t: Ua(t) = U0

(
e−

∆t
RC − 1

)
e−

t−∆t
RC .
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Low pass: behavior with a rectangular pulse

∆ t

t

t

Bipolar pulse shaping possible with a
high pass.
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Four-pole equations

I
1

I
2

1
U

2
UVierpol

AusgangsstromEingangsstrom

Eingangsspannung Ausgangsspannung

Low-pass, high-pass, and similar circuits
with a total of four connections are called
four-poles. Using so-called four-pole
equations, one can easily calculate the
behavior of circuits composed of many
four-poles.

Two of the four quantities are freely selectable, the other two depend on
these. For example, U1 = U1(I1, I2), U2 = U2(I1, I2).

dU1 =
∂U1

∂I1

∣∣∣∣
I2

dI1 +
∂U1

∂I2

∣∣∣∣
I1

dI2,

dU2 =
∂U2

∂I1

∣∣∣∣
I2

dI1 +
∂U2

∂I2

∣∣∣∣
I1

dI2.

If the four-pole consists only of linear, passive components, then even
∂Uk
∂Iℓ

= Uk
Iℓ

holds.
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Chains of four-poles

For the calculation of the behavior of a chain of four-poles, the chain form
is useful, where the input or output variables are expressed as functions of
the output or input variables:

dU1 =
∂U1

∂U2

∣∣∣∣
I2

dU2 +
∂U1

∂I2

∣∣∣∣
U2

dI2,

dI1 =
∂I1
∂U2

∣∣∣∣
I2

dU2 +
∂I1
∂I2

∣∣∣∣
U2

dI2.

d

(
U1

I1

)
= A · d

(
U2

I2

)
.

To obtain the behavior of a four-pole consisting of a chain of four-poles,
one only needs to multiply the production of the matrices Ak of the
individual four-poles with each other.
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Pulse shaping with low and high pass filters

For pulse shaping of detector signals, one connects low and high pass
filters of different time constants (RC) in series. To separate the passes,
an operational amplifier with capacitive coupling of the signals can be
used.

Low Pass High Pass

e
U

a
U

−

+

C

R

e
U

a
U

C

R

−

+

Ua =

(
1 +

1

iωRC

)
Ue .

Amplification of low frequencies.

Ua = (1 + iωRC )Ue .

Amplification of higher frequencies.
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Unipolar and bipolar pulse shaping

A+

A −

Bipolar geformtes Signal

Unipolar geformtes Signal

Ua

t

|A+| = |A−|

Disadvantage of unipolar signal shapes:
Drift of the pulse baseline due to
the superposition of successive
pulses at high signal rates.

Remedy for this problem: Use of
bipolar pulse shaping, which on
average does not shift the pulse
baseline.
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