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Recapitulation of the previous lecture
Operation of a differential amplifier

Constant current source at
the emitter. ⇒ dIk = 0.

Internal resistance of the
constant current source: rk .

Ik = IC1 + IC2 ⇒ dIC1 = −dIC2.

So dUa1 = −dUa2.

Also
dUe1 = dUBE1 = −dUBE2 = −dUe2.

UD := Ue1 −Ue2.
dUe1 = d(Ue1 −Ue2 +Ue2)

= dUD + dUe2 = dUD − dUe1,
thus dUD = 1

2dUe1.

⇒ Differential amplification AD = dUa1
dUD

AD = dUa1
2dUBE1

= −1
2S (RC ||rCE ).

Since S is large, AD is also large.

Besides the differential amplification, there is also a much smaller
common-mode amplification ACM := dUa1

d(Ue1+Ue2)/2
= −1

2
RC
rk

, which
immediately follows from the formula for the amplification of the emitter
circuit with current feedback.
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Recapitulation of the previous lecture

Alternative to bip. transistors: field-effect transistors
Construction of an n-channel junction field-effect transistor

S: Source.

G: Gate.

D: Drain. −

−

−

−

Control of the size of the charge
carrier-free zone via the value of the
voltage UGS .

Thickness of the charge carrier-free
zone determines the resistance
between drain and source.

Advantage of field-effect transistors
over bipolar transistors: Lower power
consumption, as the control is done
via the applied electric field and not
via a current.
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Recapitulation of the previous lecture
Metal-oxid-semiconductor field-effect transistor

Structure forms a capacitor from gate terminal, dielectric, and bulk terminal.
Application of positive voltage between gate and bulk charges the capacitor.
Electric field causes migration of minority carriers (electrons in p-silicon) to the junction and
recombination with majority carriers (defect electrons in p-silicon), known as depletion.
Space charge region forms at the junction with negative space charge.
At threshold voltage Uth , displacement of majority carriers becomes significant, limiting recombination.
Accumulation of minority carriers results in near-inversion of p-doped substrate close to the oxide,
known as strong inversion
Increased gate voltage induces band bending of conduction and valence bands at the junction in band
model.
Fermi level shifts closer to the conduction band than the valence band, inverting the semiconductor
material.
Formed thin n-type conducting channel connects source and drain n-regions, allowing charge carriers
to flow (almost) unimpeded from source to drain.
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Recapitulation of the previous lecture

Operational amplifiers

Operational amplifiers are broadband differential amplifiers with high
gain and high input impedance.

Operational amplifiers are available as integrated circuits made of
bipolar and field-effect transistors.

Input stage designed as a
differential amplifier, hence two
inputs (+ and -).

Positive and negative supply
voltage required to drive the
inputs and outputs positively and
negatively.

Open-loop gain:

AD :=
dUa

dUD
.
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Recapitulation of the previous lecture

Characteristic of an operational amplifier

Offset voltage U0 adjustable in
most operational amplifiers.

Linear dependency of Ua on UD

in a small range of UD around
U0.

Constant output voltage outside
of this range (amplifier
saturation).

7 7



Recapitulation of the previous lecture

Principle of negative feedback

Ua = AD(Ue − kUa) ⇔ Ua = AD
1+kAD

Ue ≈
AD→∞

1
kUe .

UP = Ue , UN = kUa , |Ua |<const. Thus,

|UP −UN | = Ua

AD
→

AD→∞
0,

i.e., UP = UN .
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Recapitulation of the previous lecture

Non-inverting amplifier

Ue = UP = UN =
R1

R1 + RN
Ua

⇔ Ua =

(
1 +

RN

R1

)
Ue .

Amplification is positive.

Value of the amplification is fully determined by the choice of RN and
R1.
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Recapitulation of the previous lecture

Voltage follower

Ua = Ue .

Small output impedance, i.e.,
behaves like a voltage source.

Use of this circuit as an
impedance converter.
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Recapitulation of the previous lecture
Inverting amplifier

UP = UN = 0.

⇒ Ua = RN · IN = RN (−I1) = −RN
Ue

R1
= −RN

R1
Ue .

Amplification is negative.

Value of the amplification is fully determined by the choice of RN and
R1.
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Recapitulation of the previous lecture

Pulse shaping

Introductory Example: Signal Pulse of a Cylindrical Drift Tube

Signalverlauf

ohne Impulsformung

t

Signalverlauf nach einem Differenzierglied

Pulse shaping with a differentiator

Retains the information of the
signal start time.

Significantly reduces the dead
time of the tube compared to
the case without pulse shaping.
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Recapitulation of the previous lecture

Low-pass and high-pass filters
Low-Pass High-Pass

C
R

U U
e a U

e
U

a
RC

Ua =
1

iωC

R + 1
iωC

Ue

=
1

1 + iωRC
Ue .

Ua =
R

R + 1
iωC

Ue

=
1

1 + 1
iωRC

Ue .

ω → 0: Ua → Ue .

ω → ∞: Ua → 0.

ω → 0: Ua → 0.

ω → ∞: Ua → Ue .
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Recapitulation of the previous lecture
Low-pass and high-pass filters

Low-Pass High-Pass

C
R

U U
e a U

e
U

a
RC

Ua =
1

1 + iωRC
Ue . Ua =

1

1 + 1
iωRC

Ue .

3dB Cutoff Frequency

1

|1 + iωRC |2
=

1

2
⇔ ω =

1

RC
.

ω ≫ 1
RC : Ua ≈ 1

iωRCUe = Ûe(ω)
iωRC e iωt ,

so Ua ≈ 1
RC

∫
Uedt.

Integrating above the cutoff
frequency.

3dB Cutoff Frequency

1∣∣1 + 1
iωRC

∣∣2 =
1

2
⇔ ω =

1

RC

ω ≪ 1
RC :

Ua ≈ iωRCUe = iωRCÛee
iωt , so

Ua ≈ RC dUe
dt .

Differentiating above the cutoff
frequency.
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Recapitulation of the previous lecture

Behavior of a low pass filter

C
R

U U
e a

1st possibility: Use of complex impedances
and a Fourier transformation from the
frequency to the time domain.

2nd possibility: Solving the following differential equation.

Ua =
Q

C
⇒ dUa

dt
=

1

C
I .

Ue = UR +Ua = R · I +Ua= RC
dUa

dt
+Ua .
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Recapitulation of the previous lecture
Low pass: behavior with a rectangular pulse

e
U

0
U

∆ t t0

Ue(t) =

{
U0 (t ∈ [0,∆t ]),

0 otherwise.

t ≤ 0: 0 = RC dUa
dt +Ua , hence Ua = 0.

t ∈ (0,∆t): U0 = RC
dUa

dt
+Ua

⇔ U0 −Ua = RC
dUa

dt
⇔

t∫
0

1

RC
dt ′ =

U (t)∫
0

dUa

U0 −Ua

⇔ − t

RC
= ln

U0 −Ua(t)

U0
⇔ e−

1
RC

t =
U0 −Ua(t)

U0

⇔ Ua(t) = U0(1− e−
1

RC
t).

t ≥ ∆t: dUa
dt = − 1

RCUa , hence Ua(t) = Ua(∆t)e−
1

RC
(t−∆t).
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Recapitulation of the previous lecture

Low pass: behavior with a rectangular pulse
Ua

U0

t>>RC∆

t<<RC∆

∆ t t

∆t ≫ RC : Ua(t → ∆t − 0) ≈ U0.

∆t ≪ RC : Ua(t) ≈ U0
t

RC for t ∈ (0,∆t).
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Recapitulation of the previous lecture
Behavior of a high pass filter

U
e

U
a

RC
Ua = R · I = RC

d(Ue −Ua)

dt
= RC

dUe

dt
− RC

dUa

dt
.

Choose Ue as before, as a rectangular pulse.
t ≤ 0: Ua(t) = 0.
t ∈ (0,∆t): Ua(t) = −RC dUa

dt , hence Ua(t) = Ua(0)e
− t

RC = U0e
− t

RC .

ϵ → 0 + 0 : t ∈ [∆t ,∆t + ϵ): Ue(t) = U0

(
1− t−∆t

ϵ

)
, hence dUe

dt = −U0
ϵ .

Ua +
RC

ϵ
U0 = −RC

dUa

dt

⇔ ϵUa + RCU0 = −ϵRC
dUa

dt

⇔
ϵ→0

U0 = −ϵ
dUa

dt
, U0ϵ = −ϵ [Ua(∆t + ϵ)−Ua(∆t)]

⇔ Ua(∆t + ϵ) = Ua(∆t)−U0= U0

(
e−

∆t
RC − 1

)
t ≥ ∆t: Ua(t) = U0

(
e−

∆t
RC − 1

)
e−

t−∆t
RC .
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Recapitulation of the previous lecture

Low pass: behavior with a rectangular pulse

∆ t

t

t

Bipolar pulse shaping possible with a
high pass.
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Recapitulation of the previous lecture

Four-pole equations

I
1

I
2

1
U

2
UVierpol

AusgangsstromEingangsstrom

Eingangsspannung Ausgangsspannung

Low-pass, high-pass, and similar circuits
with a total of four connections are called
four-poles. Using so-called four-pole
equations, one can easily calculate the
behavior of circuits composed of many
four-poles.

Two of the four quantities are freely selectable, the other two depend on
these. For example, U1 = U1(I1, I2), U2 = U2(I1, I2).

dU1 =
∂U1

∂I1

∣∣∣∣
I2

dI1 +
∂U1

∂I2

∣∣∣∣
I1

dI2,

dU2 =
∂U2

∂I1

∣∣∣∣
I2

dI1 +
∂U2

∂I2

∣∣∣∣
I1

dI2.

If the four-pole consists only of linear, passive components, then even
∂Uk
∂Iℓ

= Uk
Iℓ

holds.
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Recapitulation of the previous lecture

Chains of four-poles
For the calculation of the behavior of a chain of four-poles, the chain form
is useful, where the input or output variables are expressed as functions of
the output or input variables:

dU1 =
∂U1

∂U2

∣∣∣∣
I2

dU2 +
∂U1

∂I2

∣∣∣∣
U2

dI2,

dI1 =
∂I1
∂U2

∣∣∣∣
I2

dU2 +
∂I1
∂I2

∣∣∣∣
U2

dI2.

d

(
U1

I1

)
= A · d

(
U2

I2

)
.

To obtain the behavior of a four-pole consisting of a chain of four-poles,
one only needs to multiply the production of the matrices Ak of the
individual four-poles with each other.
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Recapitulation of the previous lecture

Pulse shaping with low and high pass filters
For pulse shaping of detector signals, one connects low and high pass
filters of different time constants (RC) in series. To separate the passes,
an operational amplifier with capacitive coupling of the signals can be
used.

Low Pass High Pass

e
U

a
U

−

+

C

R

e
U

a
U

C

R

−

+

Ua =

(
1 +

1

iωRC

)
Ue .

Amplification of low frequencies.

Ua = (1 + iωRC )Ue .

Amplification of higher frequencies.
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Recapitulation of the previous lecture

Unipolar and bipolar pulse shaping

A+

A −

Bipolar geformtes Signal

Unipolar geformtes Signal

Ua

t

|A+| = |A−|

Disadvantage of unipolar signal shapes:
Drift of the pulse baseline due to
the superposition of successive
pulses at high signal rates.

Remedy for this problem: Use of
bipolar pulse shaping, which on
average does not shift the pulse
baseline.
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From analog to digital signals



Operational amplifiers as comparators

An operational amplifier saturates when |UP −UN | exceeds a small
range of values.

Comparators are operational amplifiers where this range has been
chosen very small.

In the ideal case:

Ua =

{
Ua,max for U1 > U2,
Ua,min for U1 < U2.

Characteristic curve:
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Inverting Schmitt trigger

A Schmitt trigger is a comparator where the turn-on and turn-off
levels do not coincide.

A comparator saturates when UP ̸= UN .

Inverting Schmitt Trigger Turn-on level: Ue,on = R1
R1+R2

Ua,min.

Turn-off level: Ue,off = R1
R1+R2

Ua,max.

The difference between turn-on and
turn-off levels is called the hysteresis.

Transfer characteristic:
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Non-inverting Schmitt trigger

Circuit

Turn-on level: Ue,on = −R1
R2

Ua,min.

Turn-off level: Ue,off = −R1
R2

Ua,max.

Transfer characteristic:
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Analog-to-Digital Converter (ADC)

Two basic types of analog-to-digital converters are distinguished.

Charge-sensing analog-to-digital converter
Measurement of

Q :=

t0+∆t∫
t0

I (t)dt

and conversion of the measured value into an integer.

Amplitude sensing analog-to-digital converter
Measurement of the peak value of a signal U (t) in the interval
[t0, t0 +∆t ] and conversion of the measured value into an integer.
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Wilkinson’s method for charge measurement

Q

t

∆t

Input

Logical signal defining the time window

Discharging at constant currentCharging a capacitor

with the input signal

Number of oscillations=direct measure of the discharging time

Oscillator for the measurement of the discharging time (prop. to Q)
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Weighing method for signal amplitude measurement

Umax

reference

voltages

0

Division of the dynamic range of the
analog-to-digital converter into a series of
comparison voltages.
Conversion of the results of the voltage
comparisons into a bit pattern.
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Time-to-Digital Converter (TDC)

Analog signal → Comparator → Logic signal → Time measurement

Simplest approach to time measurement

Clock generator with a period T smaller than the desired time
measurement accuracy.
Continuous counting of clock cycles. Use a counter with n bits such
that 2n · T >(time intervals to be measured).
Record at which clock cycles nStart and nStop the start and stop
signals have arrived.
tStart − tStop is then measured as nStart − nStop.
If the counter overflows, one must use nStart − nStop + 1.
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Components for processing digital/logical signals



Logic families

As mentioned earlier there are different definitions of logic signal
levels related to different so-called “logic families”.
Still in use today (or “popular”):

Transistor-transistor logic (TTL) using bipolar transistors.
Emitter coupled logic (ECL) using bipolar transistors.
Complementary metal oxide semicondutor logic (CMOS) using
MOSFETs.
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Characteristic curve of a MOSFET

NMOS PMOS

MOSFETs are operated in saturation mode for logic gates.

34 34



MOSFETs as switches
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CMOS inverter
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CMOS NAND and NOR

Y = A AND B Y = A OR B
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Logical basic functions

Two States: logical 0 and logical 1.

Logical Basic Functions

Conjunction: y = x1 ∧ x2 = x1 · x2 = x1x2.
Disjunction: y = x1 ∨ x2 = x1 + x2.
Negation: y = x̄ .
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Rules of Calculation
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Switching elements for logical basic functions

Conjunction
AND Gate

Disjunction
OR Gate

Negation
NOT Gate
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Method of disjunctive normal form

To establish more complex logical functions, one can use the so-called
disjunctive normal form.

n input variables x1, . . . , xn . 1 output variable y.

1. Set up a table listing all possible input values along with the desired
output value. This table is also called a truth table.

2. Identify all rows in the truth table where y = 1.

3. For each of these rows, form the conjunction of all input variables; for
xk = 1, substitute xk , otherwise x̄k .

4. The sought function is obtained by forming the disjunction of all
found product terms.
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Example of exclusive OR

Truth Table

Row x1 x2 y
1 1 1 0
2 1 0 1 → x1 · x̄2 =: K2

3 0 1 1 → x̄1 · x2 =: K3

4 0 0 0

Result
y = K2 +K3 = (x1 · x̄2) + (x̄1 · x2).
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