Belle II

Stefan Wallner (swallner@mpp.mpg.de)

Max Planck Institute for Physics

Project Review December 9, 2024

The Belle II Group at the MPP

- **Director:** Allen Caldwell
- Project Leader: Hans-Günther Moser
- Fellow: Stephan Paul
- Emeritus: Christian Kiesling

- ▶ 2 Postdocs: Sagar Hazra, Stefan Wallner; Boqun Wang, Thibaud Humair, Fabian Krinner
- 5 Doctoral Candidates: Markus Reif^{*}, Philipp Leitl^{*}, Justin Skorupa, Oskar Tittel, Martin Bartl; Felix Meggendorfer, Benedikt Wach, Thomas Kraetschmar, Lukas Bierwirth
- 11 Students: Godo Kurten, Ceren Ay, Maximilian Hattenbach, Simeon Hamurcu, Franz Jackl, Vanessa Geier, Kilian Brückner, Adrian Liese, Claudia Perez-Orive, Erik Gräter, Gustav Cordes; Xavier Simó, Okan Eren, Yingming Yang, Arina Katscho, Yannik Fausch, Lars von der Werth, Timo Forsthofer, Simon Hiesl
- Technical Support: Ullrich Leis, Sven Vogt, Enrico Rochser, David Kittlinger, Miriam Modjesch, Markus Fras, Stefan Horn, Carina Schlammer, Werner Haberer

Experiment at SuperKEKB (Tsukuba/Japan)

 $\blacktriangleright~e^+e^-$ collider at $E_{
m CM}=10.58\,{
m GeV}/c^2$

Successor of the Belle experiment (1999–2010)

- Belle II goals:
 - ► 50× Belle data-sample size
- Run 1 (2019–2022)
 - ▶ World-record luminosity: $4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - Collected about
- $1/2 \times$ Belle data-sample size $1 \times$ BaBar data-sample size
- Run 2 started spring 2024
 - Upgraded detector
- Belle II consists of various subdetectors for tracking, particle identification, calorimetry

- $\blacktriangleright~e^+e^-$ collider at $E_{
 m CM}=10.58\,{
 m GeV}/c^2$
- Successor of the Belle experiment (1999–2010)
- Belle II goals:
 - ▶ 50× Belle data-sample size
- Run 1 (2019–2022)
 - ▶ World-record luminosity: $4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - Collected about

- $1/2 \times$ Belle data-sample size $1 \times$ BaBar data-sample size
- Run 2 started spring 2024
 - Upgraded detector
- Belle II consists of various subdetectors for tracking, particle identification, calorimetry

- $\blacktriangleright~e^+e^-$ collider at $E_{
 m CM}=10.58\,{
 m GeV}/c^2$
- Successor of the Belle experiment (1999–2010)
- Belle II goals:
 - ▶ 50× Belle data-sample size
- Run 1 (2019–2022)
 - World-record luminosity: $4.7 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$
 - Collected about
- $1/2 \times$ Belle data-sample size $1 \times$ BaBar data-sample size
- Run 2 started spring 2024
 - Upgraded detector
- Belle II consists of various subdetectors for tracking, particle identification, calorimetry

- $\blacktriangleright e^+e^-$ collider at $E_{
 m CM}=10.58\,{
 m GeV}/c^2$
- Successor of the Belle experiment (1999–2010)
- Belle II goals:
 - ▶ 50× Belle data-sample size
- Run 1 (2019–2022)
 - World-record luminosity: $4.7 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$
 - Collected about
- 1/2 imes Belle data-sample size 1 imes BaBar data-sample size
- Run 2 started spring 2024
 - Upgraded detector
- Belle II consists of various subdetectors for tracking, particle identification, calorimetry

- $\blacktriangleright~e^+e^-$ collider at $E_{
 m CM}=10.58\,{
 m GeV}/c^2$
- Successor of the Belle experiment (1999–2010)
- Belle II goals:
 - ▶ 50× Belle data-sample size
- Run 1 (2019–2022)
 - ▶ World-record luminosity: $4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - Collected about
- 1/2 imes Belle data-sample size 1 imes BaBar data-sample size
- Run 2 started spring 2024
 - Upgraded detector
- Belle II consists of various subdetectors for tracking, particle identification, calorimetry

Pixel Vertex Detector for precise decay-vertex reconstruction

- Two layers of monolithic "all-silicon" DEPFET modules
 - Novel development
 - No additional structures in acceptance region
- 75 µm thin sensors with 7.68 million pixels
- Impact parameter resolution 15 µm

Assembly

- Sensors + ASICS developed and produced at Max Planck Halbleiterlabor
- Kapton mounting + ladder gluing at MPP
- Module testing, characterizing, and optimizing at MPP
- System testing at DESY
- PXD1 (1 layer + 2 ladders) successfully operated during Run 1
- PXD2 (full 2 layers) installed for Run 2

Pixel Vertex Detector for precise decay-vertex reconstruction

- Two layers of monolithic "all-silicon" DEPFET modules
 - Novel development
 - No additional structures in acceptance region
- 75 µm thin sensors with 7.68 million pixels
- Impact parameter resolution 15 µm
- Assembly
 - Sensors + ASICS developed and produced at Max Planck Halbleiterlabor
 - Kapton mounting + ladder gluing at MPP
 - Module testing, characterizing, and optimizing at MPP
 - System testing at DESY
- PXD1 (1 layer + 2 ladders) successfully operated during Run 1
- > PXD2 (full 2 layers) installed for Run 2

Pixel Vertex Detector for precise decay-vertex reconstruction

- Two layers of monolithic "all-silicon" DEPFET modules
 - Novel development
 - No additional structures in acceptance region
- 75 µm thin sensors with 7.68 million pixels
- Impact parameter resolution 15 µm

Assembly

- Sensors + ASICS developed and produced at Max Planck Halbleiterlabor
- Kapton mounting + ladder gluing at MPP
- Module testing, characterizing, and optimizing at MPP
- System testing at DESY
- PXD1 (1 layer + 2 ladders) successfully operated during Run 1
- PXD2 (full 2 layers) installed for Run 2

- Pixel Vertex Detector for precise decay-vertex reconstruction
 - Two layers of monolithic "all-silicon" DEPFET modules
 - Novel development
 - No additional structures in acceptance region
 - 75 µm thin sensors with 7.68 million pixels
 - Impact parameter resolution 15 µm
- Assembly
 - Sensors + ASICS developed and produced at Max Planck Halbleiterlabor
 - Kapton mounting + ladder gluing at MPP
 - Module testing, characterizing, and optimizing at MPP
 - System testing at DESY
- PXD1 (1 layer + 2 ladders) successfully operated during Run 1
- PXD2 (full 2 layers) installed for Run 2

Pixel Vertex Detector for precise decay-vertex reconstruction

- Two layers of monolithic "all-silicon" DEPFET modules
 - Novel development
 - No additional structures in acceptance region
- 75 µm thin sensors with 7.68 million pixels
- Impact parameter resolution 15 µm
- Assembly
 - Sensors + ASICS developed and produced at Max Planck Halbleiterlabor
 - Kapton mounting + ladder gluing at MPP
 - Module testing, characterizing, and optimizing at MPP
 - System testing at DESY
- PXD1 (1 layer + 2 ladders) successfully operated during Run 1
- PXD2 (full 2 layers) installed for Run 2

Pixel Vertex Detector for precise decay-vertex reconstruction

- Two layers of monolithic "all-silicon" DEPFET modules
 - Novel development
 - No additional structures in acceptance region
- 75 µm thin sensors with 7.68 million pixels
- Impact parameter resolution 15 µm
- Assembly
 - Sensors + ASICS developed and produced at Max Planck Halbleiterlabor
 - Kapton mounting + ladder gluing at MPP
 - Module testing, characterizing, and optimizing at MPP
 - System testing at DESY
- PXD1 (1 layer + 2 ladders) successfully operated during Run 1
- PXD2 (full 2 layers) installed for Run 2

- Information from various subdetectors must be combined to identify species of charged particles
- Conventional approach based on likelihoods is imperfect
- Developed novel neural-network based approach to combine subdetector information
- For example, improvement in π identification efficiency by up to 20 %
- Becoming the standard particle identificaciton approach at Belle II

Contributions to the Trigger

- Track trigger challenging due to beam background
 - Background tracks not from interaction point
 - Higher luminosity \Rightarrow higher background
- Requires information on z position at L1 trigger to reduce trigger rate
- Developed neural network to form neural track
 - Part for every track trigger at Belle II
 - Further improvements ongoing
- Trigger on events with a low number of charged particles challenging
 - Interesting for au physics, for dark-matter searches, ...
 - Use neural tracks to trigger on a single track
 - Outperforms multi-track triggers
- Development of trigger for vertices displaced from the interaction point

Contributions to the Trigger

Track trigger challenging due to beam background

- Background tracks not from interaction point
- Higher luminosity \Rightarrow higher background
- Requires information on z position at L1 trigger to reduce trigger rate
- Developed neural network to form neural track
 - Part for every track trigger at Belle II
 - Further improvements ongoing

Trigger on events with a low number of charged particles challenging

- Interesting for τ physics, for dark-matter searches, ...
- Use neural tracks to trigger on a single track
 - Outperforms multi-track triggers
- Development of trigger for vertices displaced from the interaction point

Contributions to the Trigger

- Track trigger challenging due to beam background
 - Background tracks not from interaction point
 - Higher luminosity \Rightarrow higher background
- Requires information on z position at L1 trigger to reduce trigger rate
- Developed neural network to form neural track
 - Part for every track trigger at Belle II
 - Further improvements ongoing
- Trigger on events with a low number of charged particles challenging
 - Interesting for τ physics, for dark-matter searches, ...
 - Use neural tracks to trigger on a single track
 - Outperforms multi-track triggers
- Development of trigger for vertices displaced from the interaction point

TA+ Ag>t

- \triangleright B⁰ mesons are produced in pairs
 - Flavor-specific decay of tag \overline{B}^0 fixes flavor of signal B^0 at t_1
- Signal B^0 oscillates and decays at $t_2 = t_1 + \Delta t$
- **•** Time dependent *CP* violating asymmetry between B^0 and \overline{B}^0 decays

$$f_{CP}(\varDelta t,q) = rac{1}{4 au_{B^0}}e^{-rac{|\varDelta t|}{ au_{B^0}}}[1+q(S_{CP}\sin(\varDelta m_d \varDelta t)-C_{CP}\cos(\varDelta m_d \varDelta t))]$$

- \blacktriangleright B^0 mesons are produced in pairs in an entangled state
 - Flavor-specific decay of tag \overline{B}^0 fixes flavor of signal B^0 at t_1
- Signal B^0 oscillates and decays at $t_2 = t_1 + \Delta t$
- **•** Time dependent *CP* violating asymmetry between B^0 and \overline{B}^0 decays

$$f_{CP}(\Delta t, q) = \frac{1}{4\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} \left[1 + q(S_{CP}\sin(\Delta m_d \Delta t) - C_{CP}\cos(\Delta m_d \Delta t))\right]$$

- \triangleright B⁰ mesons are produced in pairs in an entangled state
 - \blacktriangleright Flavor-specific decay of tag \overline{B}^0 fixes flavor of signal B^0 at t_1
- Signal B^0 oscillates and decays at $t_2 = t_1 + \Delta t$

• Time dependent *CP* violating asymmetry between B^0 and \overline{B}^0 decays

$$f_{CP}(\Delta t, q) = \frac{1}{4\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} [1 + q(S_{CP}\sin(\Delta m_d \Delta t) - C_{CP}\cos(\Delta m_d \Delta t))]$$

Ar Agait

- \triangleright B⁰ mesons are produced in pairs in an entangled state
 - \blacktriangleright Flavor-specific decay of tag \overline{B}^0 fixes flavor of signal B^0 at t_1
- Signal B^0 oscillates and decays at $t_2 = t_1 + \Delta t$
- ▶ Time dependent *CP* violating asymmetry between B^0 and \overline{B}^0 decays

$$f_{CP}(\Delta t, q) = \frac{1}{4\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} [1 + q(S_{CP}\sin(\Delta m_d \Delta t) - C_{CP}\cos(\Delta m_d \Delta t))]$$

Ar Agait

- \blacktriangleright B⁰ mesons are produced in pairs in an entangled state
 - Flavor-specific decay of tag \overline{B}^0 fixes flavor of signal B^0 at t_1
- Signal B^0 oscillates and decays at $t_2 = t_1 + \Delta t$
- Time dependent *CP* violating asymmetry between B^0 and \overline{B}^0 decays

$$f_{CP}(\Delta t, q) = \frac{1}{4\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} [1 + q(S_{CP}\sin(\Delta m_d \Delta t) - C_{CP}\cos(\Delta m_d \Delta t))]$$

$B^0 ightarrow J/\psi K_{ m S}^0$

- ▶ Golden channel: $B^0 \rightarrow J/\psi K_{\rm S}^0$
 - $S_{CP} = \sin(2\beta)$
 - $C_{CP} \approx 0$
- Analysis on full Run 1 Belle II sample [PRD 110 (2024) 012001]
 - $\blacktriangleright S_{CP} = 0.724 \pm 0.035 \pm 0.014$
 - $\blacktriangleright C_{CP} = -0.035 \pm 0.026 \pm 0.012$
- Improved precision compared to Belle for same sample size
- Comparable precision as BaBar measurement

$B^0 ightarrow J/\psi K_{ m S}^0$

- ▶ Golden channel: $B^0 \rightarrow J/\psi K_{\rm S}^0$
 - $S_{CP} = \sin(2\beta)$
 - $C_{CP} \approx 0$
- Analysis on full Run 1 Belle II sample [PRD 110 (2024) 012001]
 - $\blacktriangleright \ S_{CP} = \ 0.724 \pm 0.035 \pm 0.014$
 - $C_{CP} = -0.035 \pm 0.026 \pm 0.012$
- Improved precision compared to Belle for same sample size
- Comparable precision as BaBar measurement

- ▶ The B^0/\overline{B}^0 oscillations can be measured by identifying the flavor of tag and signal B to be the same
- Fully entangled system

$$P_{\mathrm{E}}(B^{0}B^{0},\overline{B}^{0}\overline{B}^{0}) = rac{1}{4}\Gamma e^{-\Gamma|\Delta t|}[1-1\cos(\Delta m\Delta t)]$$

- Spontaneous Disentanglement
 - If entanglement breaks down (spontaneously or time dependent), time dependence is altered

- ▶ The B^0/\overline{B}^0 oscillations can be measured by identifying the flavor of tag and signal B to be the same
- Fully entangled system

$$P_{\mathrm{E}}(B^{0}B^{0},\overline{B}^{0}\overline{B}^{0}) = rac{1}{4}\Gamma e^{-\Gamma|\Delta t|}[1-1\cos(\Delta m\Delta t)]$$

- Spontaneous Disentanglement
 - If entanglement breaks down (spontaneously or time dependent), time dependence is altered

- The B^0/\overline{B}^0 oscillations can be measured by identifying the flavor of tag and signal B to be the same
- Fully entangled system

$$P_{\rm E}(B^0B^0,\overline{B}^0\overline{B}^0) = rac{1}{4}\Gamma e^{-\Gamma|\Delta t|}[1-1\cos(\Delta m\Delta t)]$$

- Spontaneous Disentanglement
 - ► If entanglement breaks down (spontaneously or time dependent), time dependence is altered $P_{\rm SD}(B^0 B^0, \overline{B}{}^0 \overline{B}{}^0) = \frac{1}{4} \Gamma e^{-\Gamma |\Delta t|} \left[1 - \frac{\Gamma^2 \Delta m^2}{2\Gamma^2 + 2\Delta m^2} \cos(\Delta m \Delta t) + \frac{\Gamma \Delta m}{2\Gamma^2 + 2\Delta m^2} \sin(\Delta m |\Delta t|)\right]$

- So far, all B-factory analyses assume 100 % entanglement. Deviations (few %) would lead to systematic errors sin(2β)
 - May explain deviation between S_{CP} measurement from LHCb and B-factories
- ▶ Test Entanglement in $B^0 \rightarrow D^- \pi^+$ decays
 - \checkmark Event selection and resolution function from $\varDelta m$ measurement
 - Modified time dependence
 - ✓ Signal MC studies
 - 📕 Background
 - 🔀 Sensitivity tests, bias, systematics

- So far, all B-factory analyses assume 100 % entanglement. Deviations (few %) would lead to systematic errors sin(2β)
 - May explain deviation between S_{CP} measurement from LHCb and B-factories
- ▶ Test Entanglement in $B^0 \to D^- \pi^+$ decays
 - $\checkmark\,$ Event selection and resolution function from $\varDelta m$ measurement
 - ✓ Modified time dependence
 - ✓ Signal MC studies
 - Βackground
 - Z Sensitivity tests, bias, systematics

- So far, all B-factory analyses assume 100 % entanglement. Deviations (few %) would lead to systematic errors sin(2β)
 - May explain deviation between S_{CP} measurement from LHCb and B-factories
- ▶ Test Entanglement in $B^0 \rightarrow D^- \pi^+$ decays
 - $\checkmark\,$ Event selection and resolution function from $\varDelta m$ measurement
 - ✓ Modified time dependence
 - ✓ Signal MC studies
 - n Βackground Ν
 - Σ Sensitivity tests, bias, systematics

Entanglement in $\Upsilon(5S) o Bar{B}^{(*)}$

- Possibility to measure absolute decay times
 - Discriminate different entanglement mechanisms
- More options due to separable C = −1 and C = +1 states
- Higher energy and $B^* \rightarrow B\gamma$ transitions may lead to disentanglement

- ▶ B meson decays to final states without charm quarks proceed via $b \rightarrow s$ transitions
- ▶ Rare in the Standard Model \Rightarrow sensitive to New Physics
- Combination of asymmetries in isospin-related $B \rightarrow K\pi$ decays offers Standard Model null test [PLB 627 (2005) 82]

- ▶ B meson decays to final states without charm quarks proceed via $b \rightarrow s$ transitions
- ▶ Rare in the Standard Model \Rightarrow sensitive to New Physics
- Combination of asymmetries in isospin-related $B \rightarrow K\pi$ decays offers Standard Model null test [PLB 627 (2005) 82]

 ${\cal A}_{{\cal K}^+\pi^-}^{{\sf CP}}$

- ▶ B meson decays to final states without charm quarks proceed via $b \rightarrow s$ transitions
- ▶ Rare in the Standard Model \Rightarrow sensitive to New Physics
- Combination of asymmetries in isospin-related $B \to K\pi$ decays offers Standard Model null test [PLB 627 (2005) 82]

$$\mathcal{A}_{K^{+}\pi^{-}}^{CP} + \mathcal{A}_{K^{0}\pi^{+}}^{CP} \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}}^{CP} \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}}^{CP} \frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \approx 0$$

- Three of the four decay channels analyzed at MPP
- ▶ Result $-0.03 \pm 0.13 \pm 0.05$

[PRD 109 (2024) 012001]

- Consistent with Standard Model prediction
 - Theory precision $\mathcal{O}(0.01)$

- Goal: Test isospin sum rule also for $B \to K^* \pi$ decays
- K^* further decays to $K\pi \Rightarrow B \rightarrow K\pi\pi$ decays
- **b** Challenge: Other contributions to $B \rightarrow K\pi\pi$ decays

 $B \to K^* \pi \quad \to K \pi \pi$ $\to \rho K \quad \to K \pi \pi$ $\to \dots \quad \to K \pi \pi$

- ▶ Very short lifetime of intermediate states (K^* , ρ)
 - Different decay chains interfere which each other
 - Measuring branching fractions and *CP* asymmetries of $B \to K^*\pi$ contribution requires partial-wave analysis (Dalitz-Plot analysis)
 - Modeling full phase-space distribution of $K\pi\pi$ final state

- Goal: Test isospin sum rule also for $B \to K^* \pi$ decays
- K^* further decays to $K\pi \Rightarrow B \rightarrow K\pi\pi$ decays
- Challenge: Other contributions to $B \rightarrow K\pi\pi$ decays

 $B \to K^* \pi \quad \to K \pi \pi$ $\to \rho K \quad \to K \pi \pi$ $\to \dots \quad \to K \pi \pi$

- ▶ Very short lifetime of intermediate states (K^* , ρ)
 - Different decay chains interfere which each other
 - Measuring branching fractions and *CP* asymmetries of $B \to K^*\pi$ contribution requires partial-wave analysis (Dalitz-Plot analysis)
 - Modeling full phase-space distribution of $K\pi\pi$ final state

- Goal: Test isospin sum rule also for $B \to K^* \pi$ decays
- K^* further decays to $K\pi \Rightarrow B \rightarrow K\pi\pi$ decays
- Challenge: Other contributions to $B \rightarrow K\pi\pi$ decays

 $B \to K^* \pi \quad \to K \pi \pi$ $\to \rho K \quad \to K \pi \pi$ $\to \dots \quad \to K \pi \pi$

- Very short lifetime of intermediate states (K^* , ρ)
 - ➡ Different decay chains interfere which each other
 - → Measuring branching fractions and *CP* asymmetries of $B \rightarrow K^*\pi$ contribution requires partial-wave analysis (Dalitz-Plot analysis)
 - Modeling full phase-space distribution of $K\pi\pi$ final state

- Rich structure in phase-space distribution (Daliz-Plot) representing different decay chains
- ▶ All four isospin-related $B \to K^*\pi$ decays

$$\blacktriangleright B^0 \to K^{*+} \pi$$

$$\blacktriangleright \hspace{0.1cm} B^{\scriptscriptstyle 0} \to K^{*0} \pi^{\scriptscriptstyle 0}$$

$$\blacktriangleright B^+ \to K^{*+}\pi$$

$$\blacktriangleright B^+
ightarrow K^{*0} \pi^+$$

can be obtained by analyzing two final states

$$B^{0} \rightarrow K^{+}\pi^{-}\pi^{0}$$
$$B^{+} \rightarrow K^{0}_{0}\pi^{+}\pi^{0}$$

 Monte Carlo input-output studies yield consistent results

- Rich structure in phase-space distribution (Daliz-Plot) representing different decay chains
- ▶ All four isospin-related $B \rightarrow K^* \pi$ decays

$$\blacktriangleright B^0 \to K^{*+} \pi$$

$$\blacktriangleright B^0 \to K^{*0} \pi^0$$

$$\blacktriangleright B^+ \to K^{*+}\pi$$

$$\blacktriangleright ~ B^+
ightarrow K^{*0} \pi^+$$

can be obtained by analyzing two final states

$$\blacktriangleright B^{0} \rightarrow K^{+}\pi^{-}\pi^{0}$$

$$\blacktriangleright B^+
ightarrow K^0_{
m S} \pi^+ \pi^0$$

 Monte Carlo input-output studies yield consistent results

- Meson resonance structure in multi-body hadronic B decays allows us to study meson resonances
- ► $J/\psi h$ system, e.g. $J/\psi K$, potentially contains exotic non- $q\bar{q}'$ meson resonances
- ▶ Partial-wave analysis of $B \rightarrow J/\psi \pi K$ decays just started
 - Also important input to $b \rightarrow s\ell\ell$ anomaly searches
- \blacktriangleright Challenge: Higher dimensionality of phase-space distribution due to spin of J/ψ

- Multi-body hadronic \(\tau\) decays provide clean environment to study light mesons
- Partial-wave analysis necessary to isolate resonance contributions and identify their quantum numbers
- ▶ $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\mp} \pi^{\pm} \overline{\nu_{\tau}}$ dominated by *a*₁-like mesons
 - High precision measurement of $a_1(1260)$ parameters
 - Confirmation of a₁(1420) signal observed by COMPASS
- Partial-wave formalism established
- Monte-Carlo input-output studies ongoing

au Decays

- Multi-body hadronic \(\tau\) decays provide clean environment to study light mesons
- Partial-wave analysis necessary to isolate resonance contributions and identify their quantum numbers
- ▶ $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\mp} \pi^{\pm} {}^{`} \overline{\nu_{\tau}}{}^{`}$ dominated by a_1 -like mesons
 - High precision measurement of $a_1(1260)$ parameters
 - Confirmation of a₁(1420) signal observed by COMPASS
- Partial-wave formalism established
- Monte-Carlo input-output studies ongoing

au Decays

- Multi-body hadronic \(\tau\) decays provide clean environment to study light mesons
- Partial-wave analysis necessary to isolate resonance contributions and identify their quantum numbers
- ▶ $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\mp} \pi^{\pm} {}^{`} \overline{\nu_{\tau}}{}^{`}$ dominated by a_1 -like mesons
 - High precision measurement of $a_1(1260)$ parameters
 - Confirmation of a₁(1420) signal observed by COMPASS
- Partial-wave formalism established
- Monte-Carlo input-output studies ongoing

Fit Result: Input Model

- Multi-body hadronic \(\tau\) decays provide clean environment to study light mesons
- Partial-wave analysis necessary to isolate resonance contributions and identify their quantum numbers
- $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\mp} \pi^{\pm} \overline{\nu_{\tau}}$ dominated by a_1 -like mesons
 - High precision measurement of $a_1(1260)$ parameters
 - Confirmation of a₁(1420) signal observed by COMPASS
- Partial-wave formalism established
- Monte-Carlo input-output studies ongoing

Search for Lepton-Flavor Violation

• Search for lepton-flavor violating $\tau^- \rightarrow \ell^- \alpha$ decay without ν_{τ}

[PRL 130 (2023) 181803]

- MPP in Belle II since 2011 (R&D since 2008)
- Development and production of the DEPFET pixel detector
 - Main German contribution to the Belle II detector lead by MPP
- MPP contributes to trigger and particle-identification performance of Belle II
- Run 1 data taking finished
 - ► 58 publications
 - World leading results
- Broad physics program with strong contribution from MPP
 - ► Flavor physics and *CP* violation
 - Entanglement
 - \blacktriangleright τ physics
 - Hadron spectroscopy
- ▶ Data sample will increase by a factor of 100 in the next decade
 - ➡ Unique physics opportunities

- MPP in Belle II since 2011 (R&D since 2008)
- Development and production of the DEPFET pixel detector
 - Main German contribution to the Belle II detector lead by MPP
- MPP contributes to trigger and particle-identification performance of Belle II
- Run 1 data taking finished
 - ▶ 58 publications
 - World leading results
- Broad physics program with strong contribution from MPP
 - Flavor physics and CP violation
 - Entanglement
 - \blacktriangleright τ physics
 - Hadron spectroscopy
- Data sample will increase by a factor of 100 in the next decade
 - ➡ Unique physics opportunities

