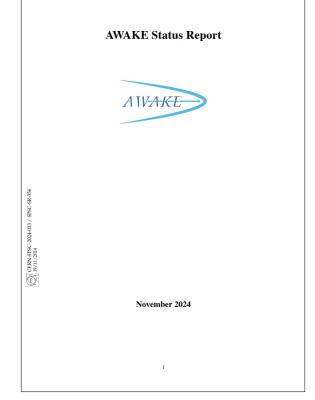


- Project Review an Advanced WAKefield Experiment

Max Planck Institute for Physics 09/12/2024


Lucas Ranc ranc@mpp.mpg.de

MAX-PLANCK-INSTITUT FÜR PHYSIK

Contents

- Introduction to AWAKE
 - Achievements
- Recent Results
 - Plasma source upgrade
 - Physics studies
- Summary & Outlook

https://cds.cern.ch/record/2917426/ files/SPSC-SR-356.pdf

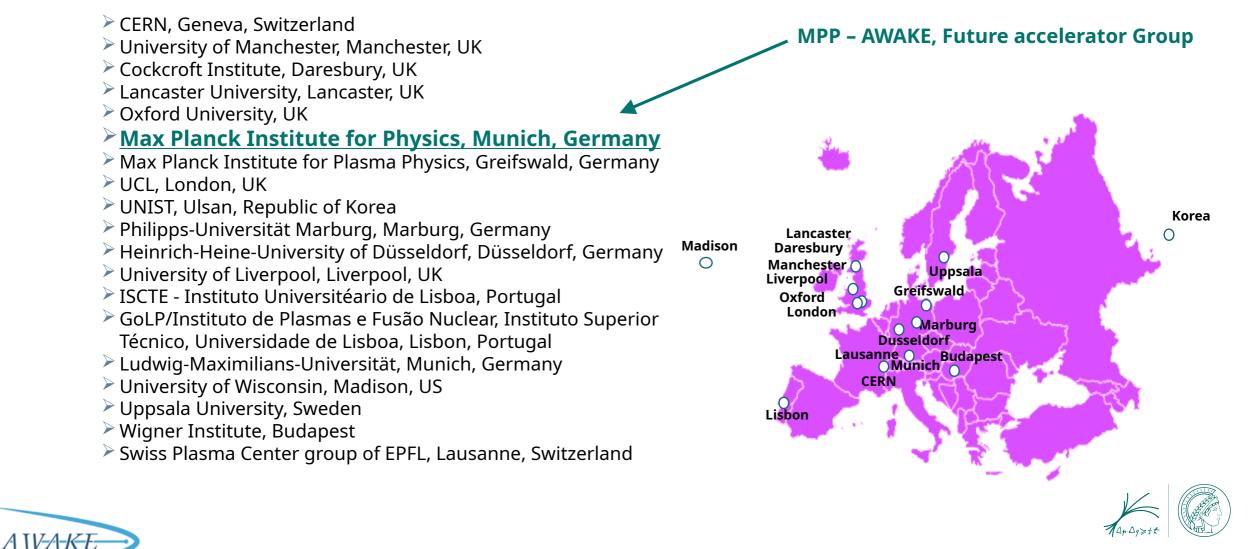
A WAKE

Contents

- Introduction to AWAKE
 - Achievements
- Recent Results

AWAKE

- Plasma source upgrade
- Physics studies
- Summary & Outlook



https://cds.cern.ch/record/2917426/ files/SPSC-SR-356.pdf

AWAKE Collaboration: 19 Institutes World-Wide

AWAKE Team

Post-Docs

Patric Muggli

Allen Caldwell

PhD Candidates

<u>Graduated PhD</u> Pablo Morales Guzmàn Livio Verra → INFN Tatiana Nechaeva → DESY

Arthur Clairembaud

09/12/2024

Jan Mezger LR - AWAKE - MPP Project Review - 2024

Michele Bergamaschi

Lucas

Ranc

John Farmer

Master student

Jedd Page

MAX-PLANCK-INSTITUT FÜR PHYSIK

Acceleration of Charged Particles

Conventional accelerators:

RF accelerators have limited acceleration gradient because of RF cavities maximum field. The limit of the order of **100 MeV/m** due to electrical breakdown in resonant cavities

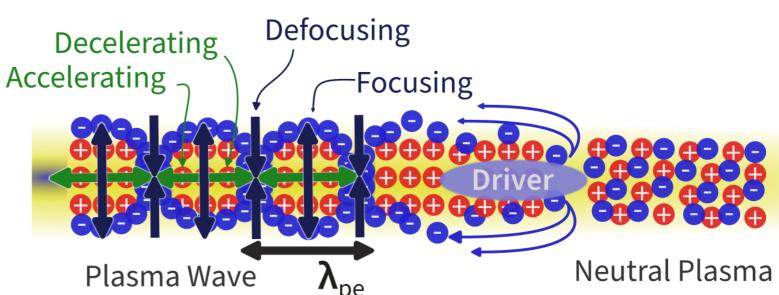
Plasma wakefields accelerators:

Use of plasma (ionized) as an accelerating medium overcomes the breakdown limits of the RF cavities and gradients above **1 up to 100 GeV/m** have been demonstrated

$$E_{WB} = \frac{m_e c}{e} \omega_{pe} \text{ where } \omega_{pe} = \sqrt{\frac{n_{pe} e^2}{\epsilon_0 m_e}}$$
scale
$$E_{WB} \propto 100 \sqrt{n_{pe}}$$

$$n_{pe} \approx 10^{14} - 10^{18} cm^{-3}$$

MAX-PLANCK-INSTITUT FÜR PHYSIK


4 I*V-A-K*-F

Plasma Wakefield Acceleration

- A **driver** can be
 - ultra-short, high-intensity laser pulse,
 - short relativistic bunch of or + charged particles
- The driver generates a radial transverse force

plasma electrons

- Expel or
- Attract
 - \rightarrow Leads to a periodic e- oscillation
 - → Wakefields

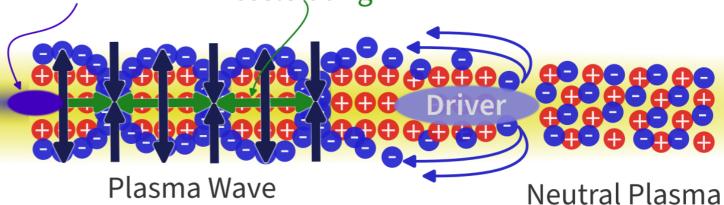
- To drive wakefields **E** >> **1 GV/m** ; Need the driver
 - → Longitudinal size σ_t smaller than λ_{pe} plasma wavelength
 - → Transverse size σ_r smaller than k_{pe} 1/(plasma skin depth)

$$\sigma_t \sim 4 \ ps \ (\leq \lambda_{pe} = 2\pi c/\omega_{pe} \sim 1 - 3 \ mm)$$

$$\sigma_r \leq \frac{c}{\omega_{pe}} \simeq 200 \ \mu m$$

$$\Rightarrow E_{WB} \propto \frac{1}{\sigma_t}$$

MAX-PLANCK-INSTITUT



09/12/2024

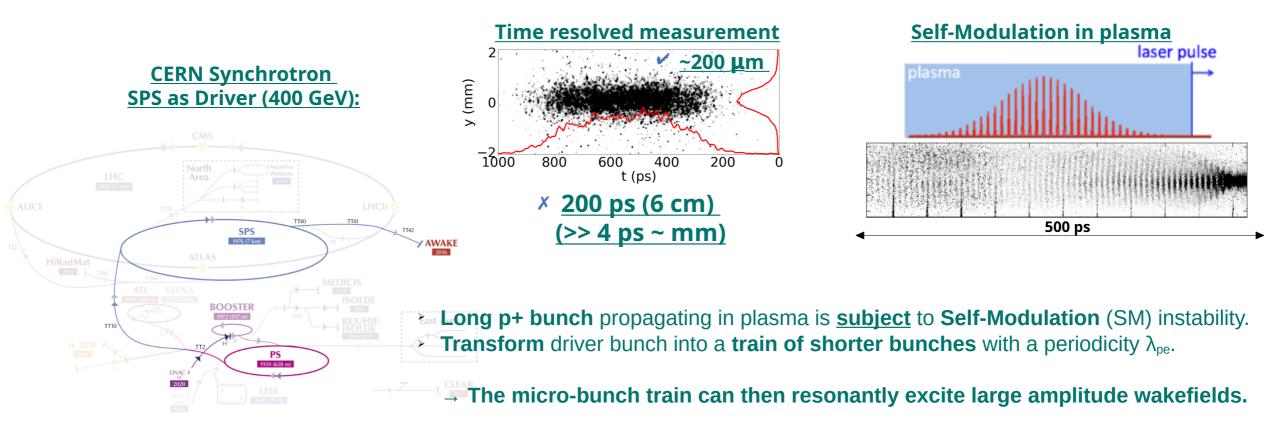
Plasma Wakefield Acceleration

e⁻ Witness Bunch Accelerating

The **Driver** travels in the plasma to **induce** a modulation of the plasma electron density that sustains longitudinal and transverse fields which are called **wakefields**

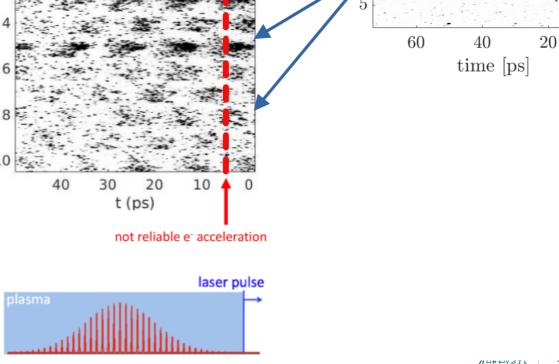
>1 GV/m wakefield can be used to accelerate particles

AWAKE:


- CERN SPS proton bunch as driver of wakefields
 - Accelerate <u>externally injected electron</u> witness bunch ~MeV to GeV

 $E_{WB} \propto \frac{1}{\sigma_t}$ $E_{WB} \propto 100 \sqrt{n_{pe}}$

AWAKE is a Plasma Wakefield Acceleration experiment using a **proton driver**


LR - AWAKE - MPP Project Review - 2024

MAX-PLANCK-INSTITUT

AWAKE is a Plasma Wakefield Acceleration experiment using a **proton driver**

Self-Modulation Instability (SMI)

Controlled Self Modulation (SM) \rightarrow Seed \sim Relative phase of the wakefields control \sim Deterministic injection to accelerate a witness bunch $= \frac{10}{10}$

nm

09/12/2024

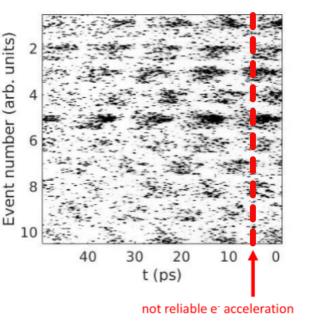
LR - AWAKE - MPP Project Review - 2024

1 wp wy # 2 h

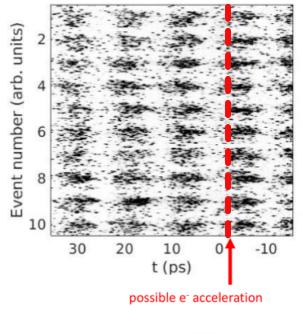
MAX-PLANCK-INSTITUT

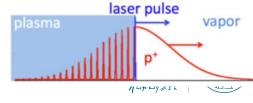
AWAKE is a Plasma Wakefield Acceleration experiment using a proton driver

Controlled Self Modulation (SM) \rightarrow Seed


- Relative **phase** of the wakefields control
- Deterministic injection to accelerate a witness bunch

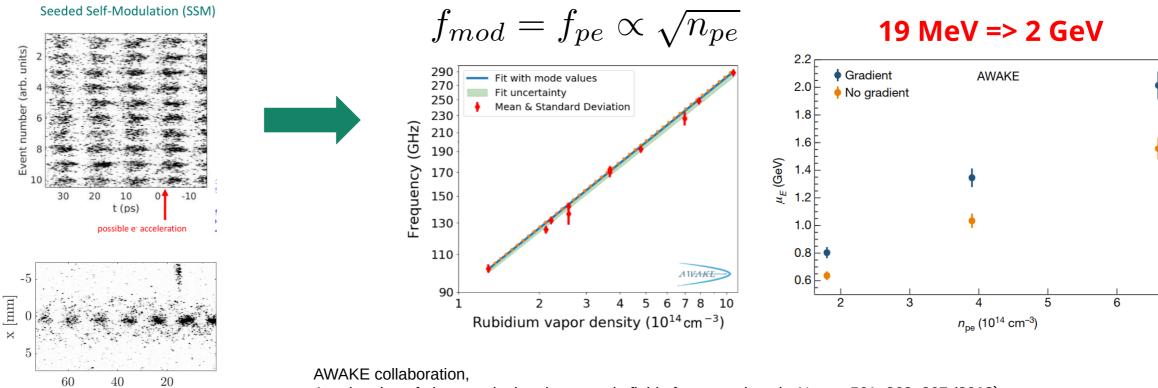
AWAKE has recently <u>demonstrated [1]</u> that the SM process does indeed transform a long proton bunch ($\sigma_t > 200 \text{ ps}$) into a train of micro-bunches with period $2\pi/\omega_{pe}$ (<10 ps)


> [1] AWAKE collaboration, Acceleration of electrons in the plasma wakefield of a proton bunch, Nature 561, 363-367 (2018)


Self-Modulation Instability (SMI)

laser pulse

Seeded Self-Modulation (SSM)



MAX-PLANCK-INSTITUT

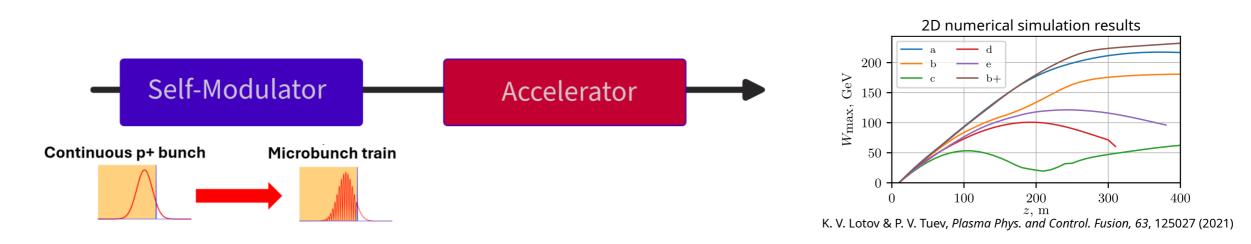
09/12/2024

A WAKE

✓ \succ AWAKE Run 1 → Demonstrate and study the seeded self-modulation

Acceleration of electrons in the plasma wakefield of a proton bunch, <u>Nature</u> 561, 363–367 (**2018**) Bachmann, A. M., & Muggli, P. (2020). JACoW: Beam Diagnostics in the Advanced Plasma Wakefield Experiment AWAKE.

MAX-PLANCK-INS


09/12/2024

time [ps]

AWAKE

now \succ AWAKE Run 2: \rightarrow Transition from proof-of-principle to applications

• Possible first applications for particle physics experiments with 50-200 GeV electron bunches

MAX-PLANCK-IN

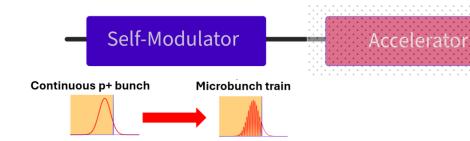
200 GeV in 200 m

A IV-A-K-E

- \checkmark > AWAKE Run 1 → Demonstrate and study the seeded self-modulation
- **now** > AWAKE Run 2: → Transition from proof-of-principle to applications

Run 2 in 4 phases:

- Run 2a: Demonstrate the seeding of the self-modulation of the entire proton bunch with an electron bunch
- Run 2b: Maintain large wakefield amplitudes over long plasma distances by introducing a step in the plasma density
 Self-Modulator
- **2029 Run 2c *:** Demonstrate electron acceleration and **emittance control** of externally injected electrons
- **2032 Run 2d *:** Development of **scalable plasma** sources to 100s meters length with sub-% level plasma density uniformity.



LR - AWAKE - MPP Project Review - 2024

MAX-PLANC

Current Layout and Contributions of MPP

Acceleration using:

- → 10 m long Rubidium vapor source
- → Ionized using TW-class Ti:Sapphire laser
- → 19 MeV electon RF Gun

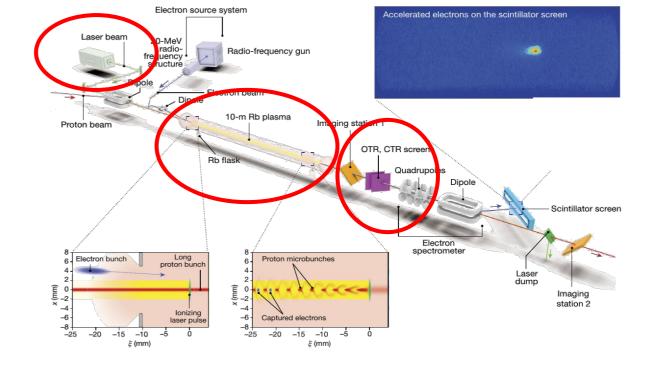
Diagnostics:

- Imaging screens
- Transition Radiation (OTR / CTR) screens

09/12/2024

- Scintillators screen
- Streak cameras
- Interferometers
- → ...

AWAKE collaboration,



LR - AV

LR - AWAKE - MPP Project Review - 2024

MAX-PLANCK-INSTITUT FÜR PHYSIK

Contents

- Introduction to AWAKE
 - Achievements
- Recent Results
 - Plasma source upgrade
 - Physics studies
- Summary & Outlook

	AWAKE Status Report	
	AWAKE	
955-585		
() 11/1/2024-0324-033 / SFSC-584-366		
	November 2024	
	ı	

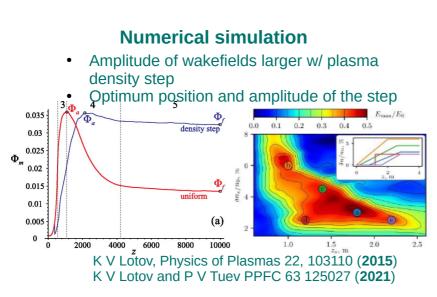
https://cds.cern.ch/record/2917426/ files/SPSC-SR-356.pdf

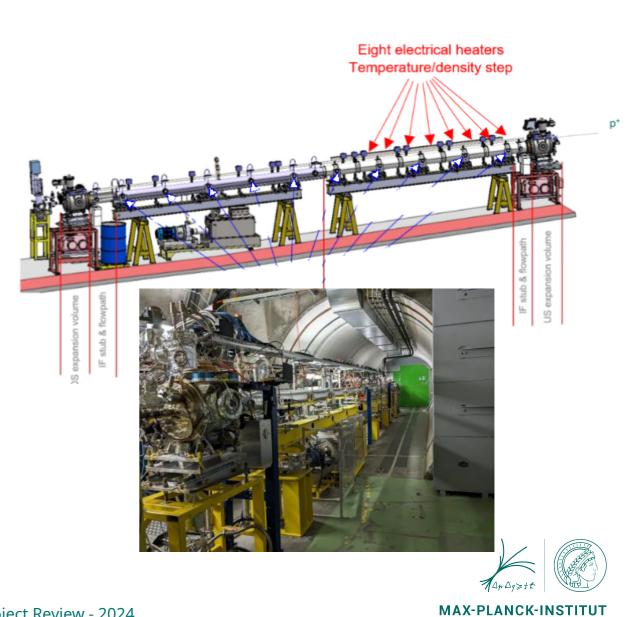
AWAKE

- \checkmark AWAKE Run 1 \rightarrow Demonstrate and study the seeded self-modulation

Run 2 in 4 phases:

- Run 2a: Demonstrate the seeding of the self-modulation of the entire proton bunch with an electron bunch
- Run 2b: Maintain large wakefield amplitudes over long plasma distances by introducing a step in the plasma density
- **2029 Run 2c *:** Demonstrate electron acceleration and **emittance control** of externally injected electrons
- **2032 Run 2d *:** Development of **scalable plasma** sources to 100s meters length with sub-% level plasma density uniformity.

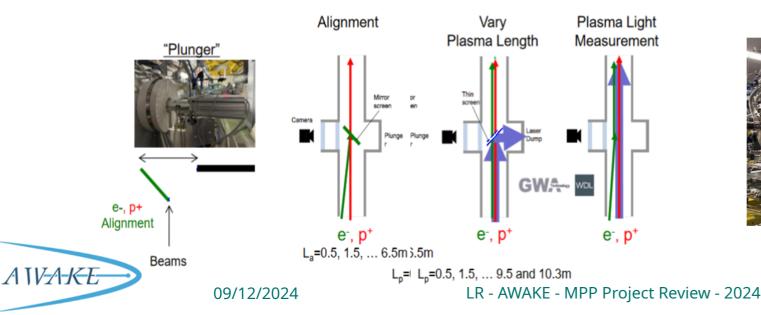


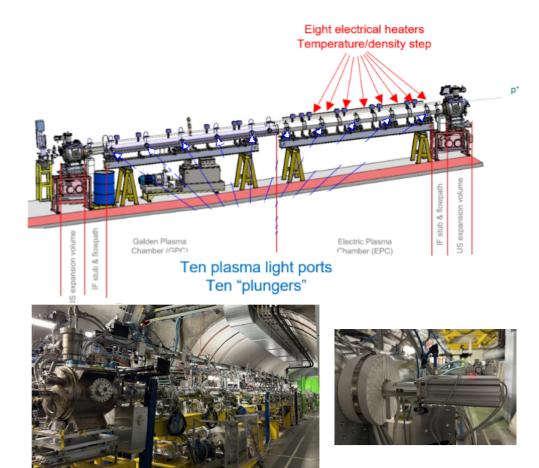

 $(\checkmark$

Plasma Source Upgrade

Impose temperature/plasma density step

- Explore the effect of a plasma density on
 - micro-bunch train
 - bunch halo
 - plasma light from dissipation of wakefields
 - Energy gain
 - Hosing
 - ...



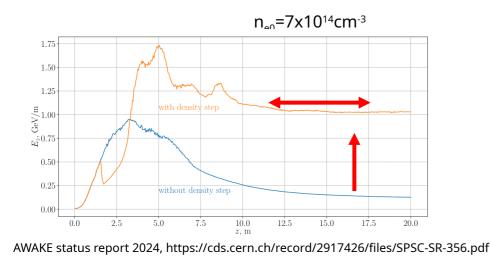

FÜR PHYSIK

Plasma Source Upgrade, Plungers Installation

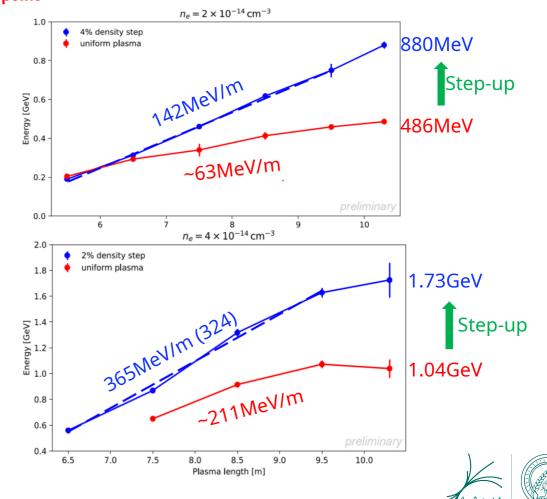
Plungers installed and commissioned on schedule in June 2024:

- Align e⁻ and p⁺ beams inside plasma source for :
 - Acceleration, side injection
 - e⁻ Seeding of Self-Modulation (e⁻SSM)
 - e⁻ Seeding of hosing
- Vary plasma length to perform:
 - Acceleration gradient measurements
 - Growth of the wakefields
 - Growth of hosing

Photos: F. Pannell



MAX-PLANCK-INSTITUT FÜR PHYSIK

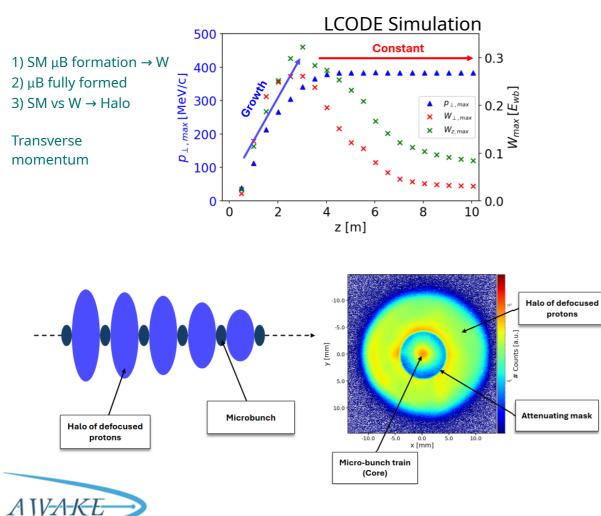

Plasma Density Step

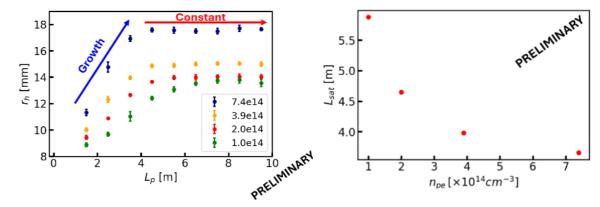
Increases energy gain, constant acceleration gradient

Plasma density (up) step to make E_z and acceleration constant past the SM saturation point

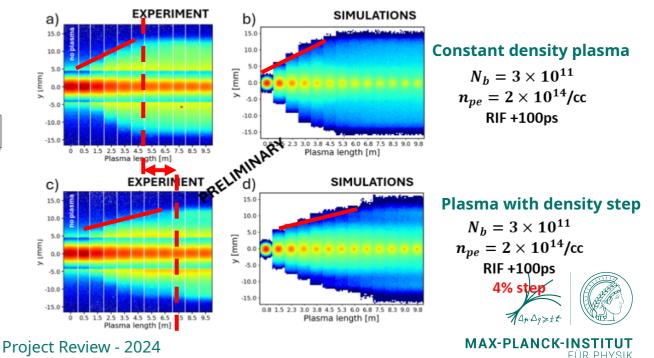
- Clear increase in final energy (L_p =10.3m): 1.04 \rightarrow 1.73GeV
- Clear increase in accelerating gradient: ~211 → 365MeV/m

LR - AWAKE - MPP Project Review - 2024

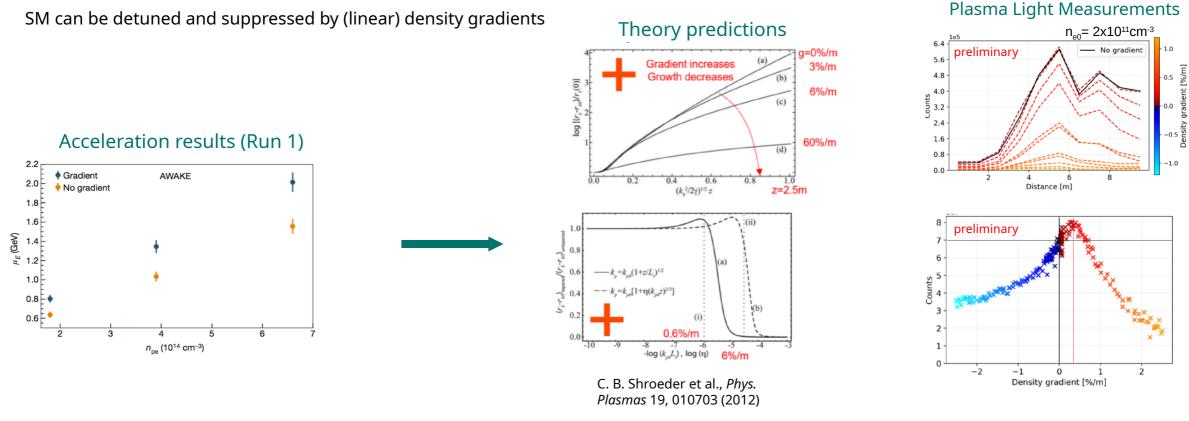

MAX-PLANCK-INSTITUT


FÜR PHYSIK

Dependency of 21 saturation length on plasma density


Growth of the Wakefields

SM saturates in less than 10m => Self-modulator for Run 2c



Halo radius shows Self-Modulation saturation length

09/12/2024

Effect of Density Gradient on Seeded Self-Modulation

- Clear observation of SM suppression: light, halo and time-resolved (not shown) diagnostics
 - Asymmetry positive/negative gradients
- Higher fields with small positive gradient consistent with higher energy gain observation

LR - AWAKE - MPP Project Review - 2024

MAX-PLANCK-INS

FÜR PHYSIK

Contents

- Introduction to AWAKE
 - Achievements
- Recent Results

AWAKE

- Plasma source upgrade
- Physics studies
- Summary & Outlook

https://cds.cern.ch/record/2917426/ files/SPSC-SR-356.pdf

FÜR PHYSIK

MAX-PLANCK-INSTITUT

Summary

• AWAKE

- Plasma wakefield driven by a Self-Modulated proton bunch
- Observed clear effect of density step
 - Stabilization of accelerating gradient at higher level
 - Energy gain
- Growth of self-modulation & wakefields along plasma studies
- Growth of hosing along plasma studies
- Successful data collection providing bases for publications and studies for preparation of AWAKE future steps
- Clear Scientific program
 - ▶ Run 2b: plasma density step (\rightarrow 2023-25)
 - ➢ Run 2c: external injection of e-bunch in second plasma, quality (2028→)
 - ▶ Run 2d: operation with acceleration in scalable plasma source (2030 \rightarrow)
- From acceleration to an accelerator → towards applications to particle physics in 2030's
 - > Dark photon searches
 - Non-linear QED in electron-photon collisions

MAX-PLAN

 \geq

•••

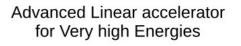
09/12/2024

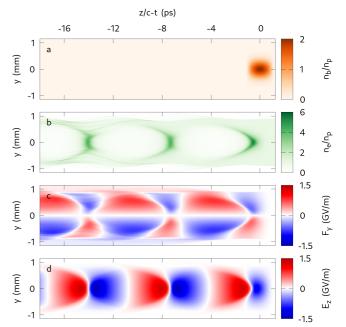
Beyond AWAKE \rightarrow HEP + ALIVE

AWAKE approach will provide mid-term particle physics opportunities

Investigate:

• high repetition rate proton accelerator luminosity


09/12/2024


• short proton bunches eases plasma requirements, more efficient use of protons

Longer-term:

- for collider applications, need scheme to reach interesting luminosity
- only fraction of protons in bunch contribute to generating useful wakefield limiting energy efficiency
- long proton bunches susceptible to hosing instability. May limit full use of proton bunch
- acceleration of electrons using many micro bunches requires very uniform plasma

J Farmer *et al* 2024, Preliminary investigation of a Higgs factory based on protondriven plasma wakefield acceleration, *New J. Phys.* 26 113011 (2024) Ar Agett

MAX-PLANCK-INS

Latest Publications

- D.A. Cooke et al. (AWAKE Collaboration), Measurement of the emittance of accelerated electron bunches at the AWAKE experiment, arXiv:2411.08681 (2024)
- M. Turner, et al. (AWAKE Collaboration), Experimental Observation of Motion of Ions in a Resonantly Driven Plasma Wakefield, arXiv:2406.16361 (2024) → PRL
- L. Verra, et al. (AWAKE Collaboration), Filamentation of a relativistic proton bunch in plasma, Phys. Rev. E 109, 055203 (2024)
- T. Nechaeva, et al. (AWAKE Collaboration), Hosing of a long relativistic particle bunch in plasma, Phys. Rev. Lett. 132, 075001 (2024)
- C. Stollberg, et al., First Thomson scattering results from AWAKE's helicon plasma source, Plasma Phys. Control. Fusion 66 115011 (2024)
- H. Saberi, et al., Elevating electron energy gain and betatron x-ray emission in proton-driven wakefield acceleration, *Phys. Plasmas* 31, 093104 (2024)
- E. Walter, et al., Wakefield-driven filamentation of warm beams in plasma, Phys. Rev. E 110, 035208 (2024)
- J. P. Farmer and G. Zevi Della Porta, Wakefield regeneration in a plasma accelerator, arXiv:2404.14175v1 (2024)
- J Farmer *et al* 2024, Preliminary investigation of a Higgs factory based on proton-driven plasma wakefield acceleration, *New J. Phys.* 26 113011 (2024)
- K. Oguzhan, et al. , A decomposition algorithm for streak camera data, *JINST* 19 P04005 (2024)
- M. Martinez-Calderon, et al., Fabrication and rejuvenation of high quantum efficiency caesium telluride photocathodes for high brightness and high average current photoinjectors, Phys. Rev. Accel. Beams 27, 023401 (2024)
- E. Senes, et al., Selective electron beam sensing through coherent Cherenkov diffraction radiation, Phys. Rev. Research 6, 023278 (2024)

An updated list of AWAKE publications is maintained at: https://twiki.cern.ch/twiki/bin/view/AWAKE/AwakePublic

MAX-PLANCI

All time

(1) Nature

(2) PRE

(9) PRL

(11) PRAB

Top Publication:

Thank you for your attention

FÜR PHYSIK

MAX-PLANCK-INSTITUT FÜR PHYSIK