

MAX-PLANCK-INST

0

0

NA62 PROJECT REVIEW 2024

0 0 0

THE SMALLEST BRANCHING FRACTION AND POSSIBLY SOME OF THE WEAKEST COUPLINGS

Jonathan Schubert for the NA62 working group at MPP

																0	0	0	0	
														0	0	0	0	0	0	
											0			0	0	0	0	0	0	
														0	0	0	0	0	0	
														0	0	0	0	0	0	
											0	•	•	•	•	•	0	0	0	
												0		0	0	•	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	
					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
						0	0	0	0	0	0	0	0	0	0	0	0	0	0	

WHAT IS NA62? THE MUCH TOO SHALLOW OVERVIEW

- Fixed target experiment in CERN North Area (400GeV SPS protons)
- Main goal of experiment is to precisely* measure the extremely rare decay $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
- Broad physics program
 - Precision measurements
 - ▶ <u>Rare/forbidden</u> decays
 - Direct exotic particle searches
 - Neutrino tagging
 - Hadroproduction

0 N 0 Φ view, Φ Ľ + C Φ roj Δ @ M D NA62(

2

25

*The nominal goal was to reach below 20% statistical uncertainty before LS3

RECENT HEADLINE RESULT NA62 KAON PHYSICS

5σ Measurement of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay*

- Lowest branching ratio ever measured at $5\sigma!$
- Clean theory predictions for the width
 - Dominated by short distance contributions
 - Hadronic matrix element can be extracted from $BR_{K^+ \to \pi^0 \ell^+ \nu_{\ell}}$ measurements via isospin rotation
- Presented at <u>CERN Colloquium</u>, publication imminent
- Measurement consistent with previous results
 - Central value moved up slightly while relative uncertainty decreased ($40\,\% \rightarrow 20\,\%$)
 - ≻ Now we observe (1.5–1.7)σ above SM
- Data taking until 2026

NA62 AT MPP PEOPLE

 $\Delta p \cdot \Delta q \ge \pm t$

2025

U

THE NA62 EXPERIMENT (AND ANTI-0 HODOSCOPE)

NA62 experiment as viewed from STRAW bending magnet (mirrored)

5

THE NA62 EXPERIMENT (AND ANTI-0 HODOSCOPE)

NA62 experiment as viewed from STRAW bending magnet (mirrored)

North Area intensity upgrades will lead to higher rates in detector readouts

- Need finer granularity hodoscopesto keep readout rate manageable
- Hodoscope tiles need to shrink

NEW FINER GRANULARITY HODOSCOPE

- Required tile-shrinkage:
 - light guides need to be adjusted to guarantee similar performance

- ✓ Light guides designed and made at MPP (big thanks to Alfons Eiterer, Alexander Stürzer, and rest of mechanics department)
- ✓ First Tests performed with ⁹⁰Sr-source and Cosmics indicated excellent correlation

✓ Design and fabrication at MPP of Mk-II tile featuring

- improved light guide design
- New Hamamatsu SiPMs mounted directly on PCB (big thanks to David Fink and the electronics department)
- Tests at CERN measuring muons of small polar in 'sandwich set-up' of two Mk-II tiles between two 1cm³ granularity 3DET hodoscopes
- Sub-1cm²-granularity tiles could be useful for any experiment with high intensity exposure

Mk-II tile fitted on plate

NA62 AT MPP WHAT WE DO

- Hardware
 - Upgrade Studies
 - Expert roles

Run Control

- Handles trigger and data acquisition
- Maintained and developed at MPP

Sensitivity analyses (theory)

- Unique experiment with (in-)direct sensitivity to numerous effects
- Dedicated NA62 sensitivity studies at MPP
- Example: Nelson-Barr ultra-light dark matter leading to CKM-value oscillation

• Exotics Working Group

- Co-convenership
- Direct BSM searches
- Phenomenology for direct searches

Screenshot of the NA62 big screen

Ap. Dg>tt

S N 0 N C Φ Review, + C roje © M P NA62 8

NA62 BEAM DUMP DATA-TAKING ALTERNATIVE RUN-MODE

- K production target followed by an achromat selecting secondary beam at fixed momentum
- Collimators of this achromat are movable and can be driven into 'closed position'
- The K production target can also be removed easily
- 400 GeV protons from SPS impinge directly on several meters of copper/iron (TAXes)
 - Beam dump set-up (target and absorber)
 - Pointing approach eliminates already very small background levels
 - Model independent search approach

NA62 BEAM DUMP DATA-TAKING ALTERNATIVE RUN-MODE

- Collimators of this achromat are movable and can be driven into 'closed position'
- The *K* production target can also be removed easily
- 400 GeV protons from SPS impinge directly on several meters of copper/iron (TAXes)
 - Beam dump set-up (target and absorber)
 - Pointing approach eliminates already very small background levels

NA62 BEAM DUMP DATA-TAKING ALTERNATIVE RUN-MODE

- Collimators of this achromat are movable and can be driven into 'closed position'
- The K production target can also be removed easily
- 400 GeV protons from SPS impinge directly on several meters of copper/iron (TAXes)
 - Beam dump set-up (target and absorber)
 - Pointing approach eliminates already very small background levels

NA62 BEAM DUMP DATA-TAKING ALTERNATIVE RUN-MODE

- Collimators of this achromat are movable and can be driven into 'closed position'
- The K production target can also be removed easily
- 400 GeV protons from SPS impinge directly on several meters of copper/iron (TAXes)
 - Beam dump set-up (target and absorber)
 - Pointing approach eliminates already very small background levels

MODEL-INDEPENDENT SEARCHES USING DUMP-MODE DATA

✓ Lepton-pair final states

- Background mainly due to accidental combination (μ) and prompt upstream scattering events (e)
- No significant excess observed
- Published in <u>JHEP</u> (μ) and <u>PRL</u> (e)

Charged hadronic final states

- Background mainly from upstream kaon events
- No events observed
- Presented at <u>Moriond</u>, publication imminent

Semi-leptonic

- Likely dominated by prompt upstream scattering events
- Targets models complementary to previous studies

Di-gamma final states

No track information available (Enormous effort to study possible backgrounds)

channel	$\pi^+\pi^-$	$\pi^+\pi^-\pi^0$	K^+K^-
$N_{\rm obs}(>5\sigma)$	3	1	1
Global signific	ances	in case of	:

observed events (selected channels)

S

MODEL-DEPENDENT INTERPRETATION OF SUCH ANALYSES (USING ALPINIST)

- Final states can be interpreted as Feebly Interacting Particles (Usual suspects are Dark Photon, Dark Scalar, Axion-Like-Particles and Heavy Neutral Leptons)
- Absence of signal excludes parameter space of these models, which requires
 - knowledge of production spectra
 - weighting algorithm for mass-width pairs assumed in MC
- Facilitated by <u>ALPINIST framework</u> developed and maintained here at MPP
- Recent <u>phenomenology study</u> regarding
 - validation of production spectra
 - review of experimental sensitivities with consistent underlying assumptions

ALPINIST comes with Toy-MC to evaluate sensitivities ahead of search

MODEL-DEPENDENT INTERPRETATION OF SUCH ANALYSES (USING ALPINIST)

- Final states can be interpreted as Feebly Interacting Particles (Usual suspects are Dark Photon, Dark Scalar, Axion-Like-Particles and Heavy Neutral Leptons)
- Absence of signal excludes parameter space of these models, which requires
 - knowledge of production spectra
 - weighting algorithm for mass-width pairs assumed in MC
- Facilitated by <u>ALPINIST framework</u> developed and maintained here at MPP
- Recent <u>phenomenology study</u> regarding
 - validation of production spectra
 - review of experimental sensitivities with consistent underlying assumptions

ALPINIST comes with Toy-MC to evaluate sensitivities ahead of search

CHARM N_{μ} sensitivity for different SM input assumptions

025

N

() () ()

`≶

Ð

C)

R

υ

oje

Ч М

SUMMARY

NA62 is a very versatile experiment with broad, world-leading physics program

NA62@MPP has hit the ground running

- Group growing steadily since started in Autumn 2022
- Vital work to keep the experiment running (run control, expert roles, improvement studies)
- Leading role for dump-mode physics within the collaboration (co-convenership, bulk of analyses, phenomenological interpretations)

We are very grateful to the electronics and mechanics department, as well as administration with a special thanks to Ina Wacker

2024 NA62 collaboration week Birmingham

0 0 0	0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0																						0	0	0	•	0 0	0	0
o o o	0 0	•	0	0	• •	0	0	0	0	0	0	o 0	0	0																						• •	0	0	0	o c	0	0
o o o	0 0	•	0	0	o o	0	0	0	0	0	0 0	o o	0	0																						• •	0	0	0	o c	0	0
o o o	0 0	o 0	0	0	o o	0	0	0	0	0	0 0	o o	0	0																					0 0	o	0	0	0	o c	0	0
o o o	0 0	0	0	0	• •	0	0	0	0	0	0 0	o o	0	0																					0 0	• •	0	0	0	o c	o o	0
o o o	0 0	o o	0	0	• •	0	0	0	0	0	0 0	o o	0	0																			0		0 0	• •	0	0	0	o c	o o	0
o o o	0 0	0	0	0	o o	0	0	0	0	0	0 0	o o	0																				0	0	0 0	• •	0	0	0	o c	0	0
o o o	0 0	•	0	0	• •	0	0	0	0	0	0 0		0																		0	0	0	0	0 0	• •	0	0	0	o c	o o	0
o o o	0 0	o o	0	0	0 0	0	0	0	0	0	0 0																				0	0	0	0	0 0	0	0	0	0	o c	o o	0
0 0 0	0 0	0	0	0	0 0	0	0	0	0	0																					0	0	0	0	0 0	0	0	0	0	o c	0	0
0 0 0	0 0	0	0	0	0 0	0	0	0	0																					o o	0	0	0	0	0 0	0	0	0	0	o c	0	0
0 0 0	0 0	0	0	0	0 0	0	0	0	0	0																			0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
0 0 0	0 0	0	0	0	0 0	0	0																							0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
0 0 0	0	0	٥	0	0 0	0	0								q	^	0										0	0	0	0 0	0	0	0	0	0 0	• •	0	0	0	o c	0	0
0 0 0	•	0	0	0	0 0	0				0	2			0		0	P										0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
0 0 0	0	0	0	0		U				•		0	•			0	0										0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
0 0 0			0	0	0 0		6	0		•		9	L	0		0										0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
0 0 0	0 0	0	0	0						0	0 0	- 	0		0										0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
																									0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
																								0		0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
																								0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
																								0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
																							0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0	0
																						0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c		0
																							0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c		0
																					0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o c	0 0	0
																					0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	o (0
																					0		0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0 0	0 0	0
																			0	~				0				0	0	0 0	0	0	0	0	0 0	0 0	0		~			~
																					· ·	~ `	· ·	<u> </u>	<u> </u>	· ·	· ·	· · ·							•		_	· · ·	•	<u> </u>		<u> </u>

HISTORY OF $K \rightarrow \pi \nu \bar{\nu}$

S

$K \rightarrow \pi \nu \bar{\nu}$: Beyond the Standard Model

- Correlations between BSM contributions to BRs of K^+ and K_L modes [JHEP 11 (2015) 166].
 - Must measure both to discriminate between BSM scenarios.
- Correlations with other observables (ε'/ε, ΔM_B, B-decays) [JHEP 12 (2020) 097] [PLB 809 (2020) 135769].
- Leptoquarks [EPJ.C 82 (2022) 4, 320], Interplay between CC and FCNC [JHEP 07 (2023) 029], NP in neutrino sector [EPJ.C 84 (2024) 7, 680] and additional scalar/tensor contributions [JHEP 12 (2020) 186][arXiv:2405.06742] ...
- Green: CKM-like flavour structure
 - Models with Minimal Flavour Violation
- Blue: new flavour-violating interactions where LH or RH currents dominate
 - Z' models with pure LH/RH couplings
- Red: general NP models without above constraints
- Grossman-Nir Bound: model-independent relation

[PLB 398 (1997) 163-168]

$$\frac{\mathscr{B}(K_L \to \pi^0 \nu \bar{\nu})}{\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})} \frac{\tau_{K^+}}{\tau_{K_L}} \lesssim 1$$
$$\Rightarrow \mathscr{B}(K_L \to \pi^0 \nu \bar{\nu}) \lesssim 4.3 \mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$$

CERN Seminar

SIGNAL EVALUATION

0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0																										0	0	0	0	0	0	o (
0	•	0	0	0	0	0	• •	0	0	0	0	0	0	0	0	0	0																										0	0	0	0	0	0 0	o c
0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0																										0	0	0	0	0	0	o (
0	0	0	0	0	0	0	o o	0	0	0	0	0	0	0	0	0	0																									0	0	0	0	0	0	0	o (
0	0	0	0	0	0	•	• •	0	0	0	0	0	0	0	0	0	0																									0	0	0	0	0	0	0	o c
0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0																							0		0	0	0	0	0	0	0 0	o c
0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0																								0		0	0	0	0	0	0	0 0	o c
0	0	0	0	0	0	0	• •	0	0	0	0	0	0	0		0																						0	0	0		0	0	0	0	0	0	0	o c
0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0																								0	0	0		0	0	0	0	0	0	0	o c
0	0	0 0	0	0	0	0	0 0	0	o	0	0	0																									0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
0	0	0 0	0	0	0	0	0 0	0	0	0	0																										0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
0	0	0 0	0	0	0	0	0 0	0	0	0	0	0																							0		0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
0	0	0 0	0	0	0	0	0 0	0	0																												0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
0	0	•	0	•	0	•	0	0	0	0	0	0	0	0	0	9	9	•			2	0		•	0	0	•	<u> </u>	<u> </u> 0						0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
0	0	.	0		0	• •	•	0	0	0	0		0		0					0					0		•		o o						0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
0	0	.	0		0		- p	0	0		0		0		0					•			0			•	•		o o				0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
0	0		0		•	5	0	0	0	0	2						0		•		0	0	0		0		•		0			0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
0	0	0 0	0	0	0	0																									0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
																															0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
																														0		0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
																														0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
																														0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0 0
																														0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
																													0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0 0
																												0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
																										0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
																											0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
																											0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c
																									0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	5 0
																							0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	o c

NEW FINER GRANULARITY HODOSCOPE MATERIAL SPECIFICATIONS

19

Scintillator	UPS-923A
Manufacturer	Institute for Scintillation Materials (ISMa)
Base	Polystyrene
Primary fluor	$2\% \ \mathrm{PTP}$
Secondary fluor	0.03% POPOP
Rise time (ns)	0.9
Decay time(ns)	~ 2 -3
Wavelength - max emission (nm)	418
${\bf Light \ output, \ \% \ of \ anthracene}$	56

Table 1: The specifications of the plastic scintillator UPS-923A [3].

Table 2: Optical Properties of CRYLON High Impact for Scintillator Light Guides [4].

Brand	CRYLON
Manufacturer	3A Composites
Base	PMMA
Refractive index	1.492
Light transmission	92%
Density	$1.19 { m g/cm^3}$
Haze	< 1%
Total solar energy transmission	86%
Gloss value	100%

NEW FINER GRANULARITY HODOSCOPE ⁹⁰SR TEST

First tests with first prototype have been done by mounting two Hamamatsu S13360-6050CS SiPMs using CAEN-DT5202 readout

Data type	SiP	M 1	SiP	M 2
Data type	MPV (p.e.)	Width (p.e.)	MPV (p.e.)	Width (p.e.)
⁹⁰ Sr source	10.84	5.97	10.98	5.64
Cosmics	11.74	6.20	9.86	5.57

SiPM2

SiPM1

Ethernet

Power Supply; 12V

Computer

UPS-923A

DT5202

Experimental Setup

Figure 9: Charge spectra for two SiPMs coupled to the UPS-923A scintillator exposed to ⁹⁰Sr radiation are illustrated. The data for each SiPM was fitted with a Landau distribution. The Most Probable Value (MPV) from the fit approximates to 11 photo-electrons (p.e.), reflecting the central tendency of the scintillator's light-yield distribution under the given radioactive exposure.

S

NEW FINER GRANULARITY HODOSCOPE ONGOING TESTS OF THE MK-II TILE

 Tests at CERN measuring muons of small

polar in 'sandwich set-up' of two Mk-II tiles between two 1cm₃ granularity 3DE hodoscopes (3D printed hodoscopes)

- Checking uniformity
- Great handle on light yield proportionality

5 x 5 cm2 hodoscope with 1 cm2 granularity, produced with 3D printer by 3DET Collaboration.

see PoS PANIC2021 (2022) 086 and JINST 15 (2020) P10019

NA62 VS. UPDATED HODOSCOPE UNIT DETAILED COMPARISON

NA62 JINST 15 (2020) C07007 SIPMs group B Current NA62 Anti-0 tile

Mk-I high granularity design

NEW FINER GRANULARITY HODOSCOPE LIGHT GUIDE

alle Innen- und Außen-Flächen 100% transparent

S

NEW FINER GRANULARITY HODOSCOPE NEW TILE

8

alle Aussenflächen 100% transparent poliert

		Revisionsverlauf		
Nr.:		Beschreibung	Datum	Name
а				
	<u>-0,1 +0,1</u>	MAX-PLANCK-INSTITUT	Rz	16
<u> </u>		Actual and a	Gewicht in kg:	Einheiten: mm
Erstellt	06.05.2024	Projekt:	Maße ohne Tolerar	izangabe nach
Design	S. Lezki	HIKE	DIN ISO 2768 m	к
Zeichnung	EIT		Werkstoff	
-		ANTI 0 Tile		
	$\exists \Phi$	Scintillator_KPL_V3		
Maßstat	Bezeichnung:		Zeichnungsnummer	/ EDV Nr.:
1 : 1		Scintillator_KPL_V3 Scintillator_KPL_V3	ANTIO_V3_ Blatt: 1 von 1 Ve	_kpl.idw
	1			A3 (297 x 420)

1	1	Scintillator	ANTI0_V1_Scintillator.	UPS 923A
			ipt	
2	2	ANTIO_V3_PMMA	ANTI0_V3_PMMA.ipt	PMMA
Teil	St.	Benennung	Dateiname	Werkstoff
		Stückliste		

Ip Dg>tt

NEW FINER GRANULARITY HODOSCOPE NEW TILE PLATE

many thanks to Alfons & Alexander

		2										
1	2	Zyl-Stift,	-	St (blank)	Ø5m6x40	IS0	(DIN				Freigeg	eben
		durchgehärtet, m6				8734	6325)				10.05.2	24
2	1	Scintillator_KPL_V3	ANTI0_V3_kpl.iam									
3	1	ANTIO V1 PMMA	ANTIO V3 PMMA Kle	PMMA						Revisionsverlauf		
			bevorsichtung Bügeli					Nr.:		Beschreibung	Datum	Name
			nt					а				
4	1	ANTIO_V1_PMMA	ANTIO_V3_PMMA_Kle	PMMA				-	0,1 +0,1		Rz	16 (/)
			bevorrichtung Rahmen							FÜR PHYSIK		$(\vee$)
			.ipt							Anthone Contraction	Gewicht in kg:	Einheiten: mm
5	2		ANTIO V3 Sensor.ipt	Generisch				Erstellt	10.05.2024 FIT	Projekt:	Maße ohne Toleran DIN ISO 2768 m	izangabe nach K
6	2		Klebefilz 1mm.ipt	Gummi				Zeichnung	EIT	HIKE	Werkstoff	
7	2	Zylinderschraube	-	St 8.8 vz	M4x50	ISO			1 Ф	SCINTILLATOR DEVICE KPL		
						4762			JΨ	ASM DEVICE		
8	2		Helikoil_M4.ipt	V2A				Maßstab	Bezeichnung:	1	Zeichnungsnummer	/ EDV Nr.:
Te	il St	. Benennung	Dateiname	Werkstoff	Abmessungen	Norm	Bemerkung		SCII	NTILLATOR_DEVICE V3 KPI	ANTIO_V3	_Vorrichtung
		•	Stückliste					1:1				
_											Blaff: 1 von 1 Ve	rsion: 2024-05-10-10:1 A3 (297 x 42

25

わらのラジオ

•	•	0	• •	0	0	0	• •	• •	•	0	0	0	0	0	0	0	0																								0	0	0	0	0	0 0	0
0	•	•	• •	0	0	0	• •	• •	0	0	0	0	0	0	0	0	0																								0	0	0	0	0	0 0	• •
0	0	•	o o	0	0	0	0 0	• •	0	0	0	0	0	0	0	0	0																								0	0	0	0	0	0 0	0
0	0	•	0 0	0	0	0	0 0	• •	0	0	0	0	0	0	0	0	0																							b	o o	0	0	0	0	0 0	• •
0	0	•	• •	0	0	0	• •	• •	0	0	0	0	0	0	0	0	0																							b	o	0	0	0	•	0 0	•
0	0	•	o o	0	0	0	• •	• •	0	0	0	0	0	0	0	0																						0		b c	o	0	0	0	0	0 0	• •
0	0	•	0 0	0	0	0	• •	• •	0	0	0	0	0	0	0	0																						0	0	,	o o	0	0	0	0	0 0	• •
0	•	•	• •	0	0	0	• •	• •	0	0	0	0	0	0		0																				0	0	0	0 0	,	•	0	0	0	0	0 0	•
0	0	•	0 0	0	0	0	0 0	• •	0	0	0	0	0	0																						0	0	0	0 0	b	o o	0	0	0	0	0 0	•
0	0	0	0 0	0	0	0	0 0	• •	0	0	0	0																								0	0	0	0	b 0	o o	0	0	0	0	0 0	•
0	0	•	• •	0	0	0	0 0	• •	0	0	0																									0	0	0	0 0	,	•	0	0	0	0	0 0	•
0	0	0	0 0	0	0	0	0 0	• •	0	0	0	0																						0		0	0	0	0 0	,	o o	0	0	0	0	0 0	•
0	0	0	0 0	0	0	0	0 0	• •	0																										0 0	0	0	0	0 0	,	o o	0	0	0	0	0 0	•
0	0	•	• •	•	0	•	0 0	• •		0	0		0			0	-	0	•	<u> </u>	-	0	0		0	0	•	• •	0	0	•	•	0	0	9 9	0	0	2	• _ •	•	•	0	0	0	0	0 0	•
0	0	•			0	9	0	0	0	0	6	0			•		0		•	C	0	•	6	0		•			0		0	0	Т	0	< 0	•	•		/ /	, o	o o	0	0	0	0	0 0	•
0	0	•			0		~ •	, c	0		0		0		0		0		0	0	0	o	0	0		0	d V	7	0	>	0			0	• •		0	•	• •	o (o o	0	0	0	0	0 0	•
0	0	•	0		0	5	0	0		6						0			•			0			•	0	•		0		(0		0	• •		0	0) (,	o o	0	0	0	0	0 0	•
0	0	0	0 0	0	0	0																								0	0	0	0	0	o o	0	0	0	0 0	b	o o	0	0	0	0	0 0	•
																														0	0	0	0	0	0 0	0	0	0	0 0	b 0	o o	0	0	0	0	0 0	•
																													0		0	0	0	0	• •	0	0	0	0 0	b	o o	0	0	0	0	0 0	•
																													0	0	0	0	0	0	• •	0	0	0	0 0	o (o	0	0	0	0	0 0	•
																											0 0		0	0	0	0	0	0	0 0	0	0	0	0 0	b	o o	0	0	0	0	o o	•
																											0		0	0	0	0	0	0	• •	0	0	0	0 0	b	o o	0	0	0	0	0 0	•
																											•	o o	0	0	0	0	0	0	• •	0	0	0	• •	b	•	0	0	0	0	0 0	•
																											0	o o	0	0	0	0	0	0	• •	0	0	0	0 0	b 0	o	0	0	0	0	0 0	•
																									0	0	0	• •	0	0	0	0	0	0	0 0	0	0	0	0 0	b c	o	0	0	0	0	0 0	•
																										0	0	o o	0	0	0	0	0	0	• •	0	0	0	0	o (•	0	0	0	0	0 0	•
																								0		0	0	o o	0	0	0	o o	0	0	0 0	0	0	0	• •	b 0	o	0	0	0	0	0 0	•
																							0	0	0	0	0	o o	0	0	0	o o	0	0	0 0	0	0	0	• •	o (o o	0	0	0	0	• •	•
																						0	0	0	0	0	0	• •	0	0	0	•	0	0	• •	0	0	0	• •	, o	•	0	0	0	•	0 0	•

THE NA62 EXPERIMENT THE DETECTORS IN KAON MODE

- K^+ tagged by KTAG and 3-mom. determined by GTK
- Decay products are classified by 3-mom. (STRAW), time measured (CHOD), PID (LKr, MUV1,2, and RICH), where MUV3 gives μ-ID
- Photons can be vetoed by LKr and LAV or SAC/IRC depending on the angle

Ap Ag≥±t

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

28

 $\Delta_p \cdot \Delta_q \ge \frac{1}{2} t$

 $\Delta p \cdot \Delta q \ge \pm t$

 $\Delta p \cdot \Delta q \ge \pm t$

 $\Delta p \cdot \Delta q \ge \pm t$

28

Ap Ag≥±t

28

 $\Delta_p \cdot \Delta_q \ge \frac{1}{2} t$

28

Ap Ag≥±t

THE NA62 EXPERIMENT TAX SET-UP IN MORE DETAIL

S 2 0 N ec Review, Project NA62@MPP

29

Ap Ag > 1 t

0	0	0	0 0	o o	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0																										0	0	0	0	0	• •	o o
0	0	•	0	• •	0	0	0	0	0	0	0 0	D O	0	0	0	0	0																										0	0	0	0	0	o (o c
0	0	•	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0																								0		0	0	0	0	0	0 (o c
0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	o o	0	0	0 0	0 0	0																								0	0	0	0	0	0	0	o (o c
0	0	•	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0																									0	0	0	0	0	0	0 (o o
0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	b	0	0	0 0	0	0																					0	0 0		0	0	0	0	0	0	0	o (0 0
0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	b	0	0	0 0	0 0																						0	0 0	o o	0	0	0	0	0	0	0	0 (0 0
0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	D	0	0	0 (0	0 0	0	0	0	0	0	0	0	0	o (0 0
0	0	0	0 0	0 0	0	0	0	0	0 0	0	0 0	D (0	0																								0	0 0	o o	0	0	0	0	0	0	0	o (0 0
0	0	0	0 0	0 0	0	0	0	0	0 0	0	0 0	D (0 0	0 0	0	0	0	0	0	0	0	0	o (0 0
0	0	0	0 0	0 0	0	0	0	0	0 0	0	0 0	0																									0	0 0	0 0	0	0	0	0	0	0	0	0	0 1	0 0
0	0	0	0 0	0 0	0	0	0	0	0 0	0	0 0																										0	0	0 0	0	0	0	0	0	0	0	0	0 (0 0
0	0	0	0 0	0 0	0	0	0	0	0 0	0																											0	0 0	0 0	0	0	0	0	0	0	0	0	0 1	0 0
0	0	0	<u> </u>	0	0	_	•	0	0	0	0	_		0	0			0	_0	0			0	0		_	0	0	•							0	0	0 0	0 0	0	0	0	0	0	0	0	0	。,	0 0
0	0	0			0				•				。								1 0	1	6	0	0		0		。	0	•				0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 1	0 0
0	0	0			0		0	,	0							5	þ				0		0	0	5		0		•	0						0	0	0	0 0	0 0	0	0	0	0	0	0	0	0 1	0 0
0	0	0			•						7			,							•	0							。						0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 1	0 0
0	0	0	0	0	0	_	~			~											_		~	_	_			0			•				0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0
																								0										0 0	0	0	0	0	0 0		0	0	0	0	0	0	0	0 (0 0
														~				0		0				0			0							0 0	0	0	0	0			0	0	0	0	0	0	0	0 (0 0
		1																							6						0	0	0	0 0	0	0	0	0	0 0		0	0	0	0	0	0	0	0 (0 0
																								0		0	•	0				0	0	0 0	0	0	0				0	0	0	0	0	0	0	0 (
																														 		0	0	0 0		0	0	0			0	0	0	0	0	0	0	0 (
																											Č	č	Š	· ·	ő	ő	ő	0 0	Ő	Č	č				ő	ő	ő	Č	č	ő	Š		
																									Č	Č	ŏ	č	Š	· ·	ő	ő	ő	0 0		ő	Č	č				ő	ő	ő	ő	°	č		
																												č		0 0 0 0	Š	Č	č	0 0 0 0	Š	Č	č				Š	Č	č	č	č	č	Š		
																												č			Č	č	Č			Č	č				č	Č	č	č	č	č	Š		, .
																																Č	<u> </u>											č	Č	°			
																											č	~				č	č	0 0		č	č				Š	č	č	č	č	Š	~		
																									0	0	~		0	0 0 0 0	0	0	~	0 0	0	0	0				0	0	0		Š			0 0	
																									0	0	0	0	0 0	0 0	0	0	0	0 0	0	0	0	U	0 0	, 0	0	0	0	0	0	0	0	U (, o

EXOTIC SEARCHES IN BEAM DUMP MODE REDUCING BACKGROUNDS

- Using TAX magnets to sweep muons
- Additional upstream magnet tuned to increase muon sweeping (studied with help from PBC)
- Compared to 2018, background rejection was increased by O(200) on most 2-track channels despite higher intensity

] 0.0012

ر م 8000.0

0.0006 ð

0.0004 ·

0.0002

15

0.001

N

BACKGROUNDS IN *e*ē SEARCH

$$N_{\rm bkg}^{\rm CR,SR} = N_{\rm bkg}^{\rm inFW} (1 - \eta_{\rm LAV\,ANTI0}) (1 - \eta_{\rm CR,SR})$$

which results in

 $N_{\rm bkg}^{\rm SR} = 0.0094^{+0.049}_{-0.009} @ 90 \% \text{ CL}$ $N_{\rm bkg}^{\rm CR} = 0.0097^{+0.049}_{-0.009} @ 90 \% \text{ CL}$

$\clubsuit\space$ Probability to observe SM event in SR again at 1.6~%

BACKGROUNDS UPSTREAM IN DEPTH

Control sample (no Anti0 veto) contained

• 19 upstream events

vetoed by Anti0

- 2 $K_S \rightarrow \pi^+ \pi^-$
 - mask 3σ window in $m_{\pi\pi}$ around m_{K_S}
- 8 $K^+ \to \pi^+ \pi^+ \pi^- (8 \pm 4 \text{ exp.})$
 - ${\scriptstyle \bullet}$ Id as $6\times\pi^+\pi^-$ and $2\times\pi^+\pi^-\gamma$
 - 1 obs. (1.0 ± 0.5 exp.) after requiring Anti0 acceptance

Channel	$N_{ m exp,CR} \pm \delta N_{ m exp,CR}$	$N_{ m exp,SR} \pm \delta N_{ m exp,SR}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004

 $K_{4\ell}$ simulated and gave only negligible backgrounds

0	•	•	0 0	• •	0	0	0	0	0 0	0	0	0	0	0	0	0	0																									0	0	• •	0	0	0	0
•	•	•	0 0	• •	0	0	•	•	0 0	0	0	0	0	0	0	0	0																									0	0	o o	0	0	0	0
0	•	0	0 0	• •	0	0	0	0	0 0	0	0	0	0	0	0	0	0																							0		0	0	o o	0	0	0	0
0	0	0	0 0	• •	0	0	0	0	0 0	0	0	0	0	0	0	0	0																							0	0	0	0	o o	0	0	0	0
0	0	•	0 0	• •	0	0	0	0	0 0	• •	0	0	0	0	0	0	0																								0	0	0	0 0	0	0	0	0
0	0	0	0 0	• •	0	0	0	0	0 0	0	0	0	0	0	0	0																						0		0	0	0	0	• •	•	0	0	0
0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0																						0	0	0	0	0	0	o o	0	0	0	0
0	•	0	0 0	• •	0	0	•	0	0 0	0	0	0	0	0		0																					• •	0	0	0	0	0	•	• •	•	0	0	0
0	0	0	0 0	• •	0	0	0	0	0 0	0	0	0	0	0																						0 0	0	0	0	0	0	0	0	• •	0	0	0	0
0	0	0	0 0	0	0	0	0	0	0 0	0	0	0																									0	0	0	0	0	0	0	0 0	0	0	0	0
0	0	0	0 0	0	0	0	0	0	0 0	0	0																									0 0	• •	0	0	0	0	0	0	• •	0	0	0	0
0	0	0	0 0	0	0	0	0	0	0 0	0	0	0																						0		0 0	• •	0	0	0	0	0	0	o o	•	0	0	0
0	0	0	0 0	0	0	0	0	0	0 0	0																										0 0	0	0	0	0	0	0	0	0 0	0	0	0	0
0	0	0	0	•	0	•	0	•	0 0		0	2		0	^	•	<u> </u>	-		•	•			0	•	0	<u> </u>	<u>ه</u>	•	0	0	o (0	•	0	0 0	• •	0	0	0	0	•	0	• •	•	0	0	0
0	0	•	•		0	0	0	•			0		0	0		0	•			0		9	•		0	0) (•	•		0	0	0	J	0	0 0	• •	0	0	0	0	0	0	• •	•	0	0	0
0	0	•	0 0		0	0	0	•		N	0	0		0			•			0		V	•		0	•	b (•	•		0	0	0 0		0	0 0	• •	0	0	0	0	0	0	• •	0	0	0	0
0	0	•		0	0			0	0		0			0			•			0	0				0	•	þ (•	0			Þ			0	0 0	• •	0	0	0	0	•	•	• •	•	0	•	0
0	0	0	•	•	0		•	2	0	- 2	0			•			•				-	0	0	•		•	2	°	•		0	•		•	0	0 0	• •	0	0	0	0	•	•	• •	•	0	0	0
																	•			Þ	0	•		0		•		o 0		0	0	0	•	0	0	0 0	• •	0	0	0	0	•	0	o o	•	0	0	0
																•	•			· ·	U	0		0) (o 0	•	0		0	•	0	0	0 0	• •	0	0	0	0	•	0	• •	•	0	0	0
																	0		0					0		0) (0 0	0			0	•	0	0	0 0	• •	0	0	0	0	•	•	• •	•	•	0	0
																											0		0	0	0	0	0 0	0	0	0 0	• •	0	0	0	0	•	•	o o	•	0	0	0
																											0		0	0	0	0	0	0	0	0 0	• •	0	0	0	0	0	0	o o	0	0	0	0
																											0	o o	0	0	0	0	0	0	0	0 0	• •	0	•	•	0	•	•	• •	•	0	•	0
																											0	0 0	0	0	0	0	0	0	0	0 0	• •	0	0	0	0	•	•	• •	•	0	0	0
																									0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	• •	0	0	0	0	•	•	• •	•	0	•	0
																										0	•	o o	•	0	0	0	0	0	0	0 0	• •	0	•	0	0	•	•	• •	•	•	•	0
																								0		0	0	• •	•	0	0	0	0	0	0	0 0	• •	0	•	•	0	•	•	• •	•	0	•	0
																							0	0	0	0	0	0 0	•	0	0	0	0 0	0	0	0 0	• •	0	0	0	0	•	•	• •	•	0	•	0
																						0	0	0	0	0	0	0 0	•	0	0	•	o o	0	0	0 0	0	0	0	0	0	0	0	• •	•	0	0	0

EXCLUSIONS REACHED

0 2 ec Review, roject ۵. ٥. NA62@MP

ALPINIST SCHEMATIC LAYOUT

NA62 SENSITIVITY ESTIMATES

Heavy Neutral Lepton for different coupling scenarios