Concepts of Experiments at Future Colliders II

PD Dr. Oliver Kortner

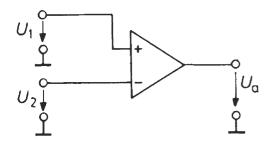
17.05.2024

From analog to digital signals

Recapitulation of the previous lecture

Operational amplifiers as comparators

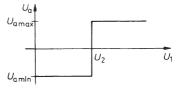
- An operational amplifier saturates when $|U_P U_N|$ exceeds a small range of values.
- Comparators are operational amplifiers where this range has been chosen very small.



In the ideal case:

$$U_a = \begin{cases} U_{a,\max} \text{ for } U_1 > U_2, \\ U_{a,\min} \text{ for } U_1 < U_2. \end{cases}$$

Characteristic curve:



Analog-to-Digital Converter (ADC)

Two basic types of analog-to-digital converters are distinguished.

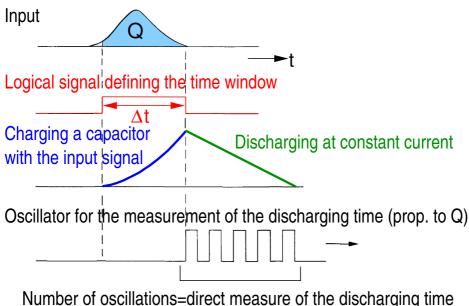
• Charge-sensing analog-to-digital converter Measurement of

$$Q := \int_{t_0}^{t_0 + \Delta t} I(t) dt$$

and conversion of the measured value into an integer.

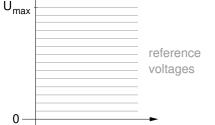
• Amplitude sensing analog-to-digital converter Measurement of the peak value of a signal U(t) in the interval $[t_0, t_0 + \Delta t]$ and conversion of the measured value into an integer.

Recapitulation of the previous lecture



Recapitulation of the previous lecture

Weighing method for signal amplitude measurement



Division of the dynamic range of the analog-to-digital converter into a series of comparison voltages.

Conversion of the results of the voltage comparisons into a bit pattern.

Time-to-Digital Converter (TDC) Analog signal \rightarrow Comparator \rightarrow Logic signal \rightarrow Time measurement

Simplest approach to time measurement

- Clock generator with a period T smaller than the desired time measurement accuracy.
- Continuous counting of clock cycles. Use a counter with n bits such that $2^n \cdot T >$ (time intervals to be measured).
- Record at which clock cycles n_{Start} and n_{Stop} the start and stop signals have arrived.

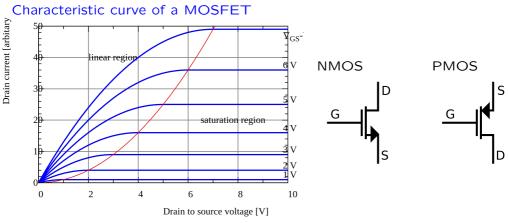
 $t_{Start} - t_{Stop}$ is then measured as $n_{Start} - n_{Stop}$.

If the counter overflows, one must use $n_{Start} - n_{Stop} + 1$.

Components for processing digital/logical signals

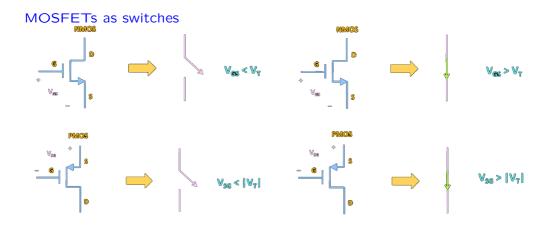
Logic families

- As mentioned earlier there are different definitions of logic signal levels related to different so-called "logic families".
- Still in use today (or "popular"):
 - Transistor-transistor logic (TTL) using bipolar transistors.
 - Emitter coupled logic (ECL) using bipolar transistors.
 - Complementary metal oxide semicondutor logic (CMOS) using MOSFETs.

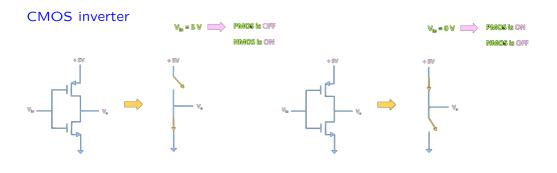


MOSFETs are operated in saturation mode for logic gates.

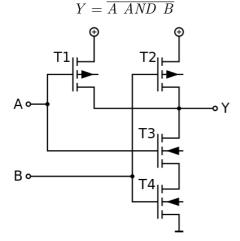
Recapitulation of the previous lecture

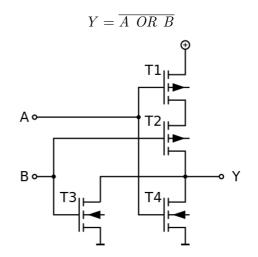


Recapitulation of the previous lecture



CMOS NAND and NOR





Logical basic functions

Two States: logical 0 and logical 1.

Logical Basic Functions

- Conjunction: $y = x_1 \wedge x_2 = x_1 \cdot x_2 = x_1 x_2$.
- Disjunction: $y = x_1 \lor x_2 = x_1 + x_2$.
- Negation: $y = \bar{x}$.

Recapitulation of the previous lecture

Rules of Calculation	
Kommutatives Gesetz:	
$x_1x_2 = x_2x_1$	

$x_1(x_2x_3) = (x_1x_2)x_3$	
Distributives Gesetz:	

$$x_1(x_2 + x_3) = x_1x_2 + x_1x_3$$
 $x_1 + x_2x_3 = (x_1 + x_2)(x_1 + x_2)(x_2 + x_3)(x_3 + x_3)(x_$

Absorptionsgesetz: $x_1(x_1 + x_2) = x_1$

Tautologie:

xx = x

Gesetz für die Negation $x\overline{x} = 0$

Doppelte Negation: $\overline{(\overline{x})} = x$

De Morgans Gesetz: $\overline{x_1x_2} = \overline{x}_1 + \overline{x}_2$

Operationen mit 0 und 1: $x \cdot 1 = x$

 $x \cdot 0 = 0$

~

$x_1 + x_1 x_2 = x_1$
x + x = x
$x + \overline{x} = 1$

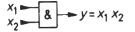
 $\overline{x_1 + x_2} = \overline{x}_1 \overline{x}_2$ x + 0 = xx + 1 = 1

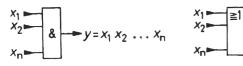
:+	x = x	
· +	$\overline{r} = 1$	

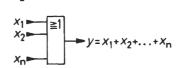
 $x_1 + x_2 = x_2 + x_1$

Switching elements for logical basic functions

Conjunction AND Gate Disjunction OR Gate Negation NOT Gate







'=X1+X2

Method of disjunctive normal form

To establish more complex logical functions, one can use the so-called disjunctive normal form.

n input variables x_1, \ldots, x_n . 1 output variable *y*.

- 1. Set up a table listing all possible input values along with the desired output value. This table is also called a truth table.
- 2. Identify all rows in the truth table where y = 1.
- 3. For each of these rows, form the conjunction of all input variables; for $x_k = 1$, substitute x_k , otherwise \bar{x}_k .
- 4. The sought function is obtained by forming the disjunction of all found product terms.

Example of exclusive OR

Truth Table

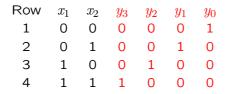
Row	x_1	x_2	y	
1	1	1	0	
2	1	0	1	$\rightarrow x_1 \cdot \bar{x}_2 =: K_2$
3	0	1	1	$\rightarrow \bar{x}_1 \cdot x_2 =: K_3$
4	0	0	0	

Result

 $y = K_2 + K_3 = (x_1 \cdot \bar{x}_2) + (\bar{x}_1 \cdot x_2).$

Example of a 1-of-4 decoder

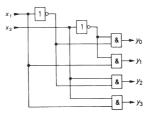
Truth table



Result

$$y_0 = \bar{x}_1 \cdot \bar{x}_2$$
. $y_1 = \bar{x}_1 \cdot x_2$. $y_2 = x_1 \cdot \bar{x}_2$. $y_3 = x_1 \cdot x_2$.

Circuit



Derived Basic Functions

$$\begin{array}{l} x_1 \text{ NOR } x_2 := \overline{x_1 + x_2} = \overline{x}_1 \cdot \overline{x}_2. \quad \overleftarrow{}^{a} \xrightarrow{\flat} \\ x_1 \text{ NAND } x_2 := \overline{x_1 \cdot x_2} = \overline{x}_1 + \overline{x}_2. \quad \overleftarrow{}^{a} \xrightarrow{\flat} \\ \end{array}$$

Flip-Flop

Setting S = R = 1 results in $Q = \overline{Q} + 1 = \overline{1} = 0$ and $\overline{Q} = \overline{1 + Q} = \overline{1} = 0$. Subsequently setting R = 0 and S = 0 simultaneously leaves the output state undefined.

$$\begin{array}{l} Q = \overline{\overline{Q} + 0} = \overline{\overline{Q}} \text{ can be 0 or 1.} \\ \overline{Q} = \overline{Q + 0} = \overline{Q} \text{ can be 0 or 1.} \\ \Rightarrow R = S = 1 \text{ is generally prohibited} \end{array}$$

Fundamentals of statistical treatment of experimental data

Introductory example: beam energy measurement

Example: Measurement of the energy of a monoenergetic particle beam. Notations

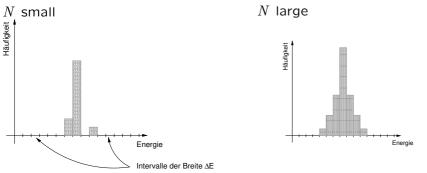
 E_S : actual beam energy.

N: number of measurements of beam energy.

 E_k : result of the k-th measurement of beam energy.

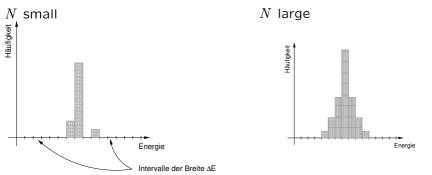
Frequency Distributions

Introductory example: beam energy measurement



- When N is large, repeating the N measurements yields (nearly) the same frequency distribution.
- In the limit $N \to \infty$, the frequency distribution converges to the probability distribution for the outcome of the measurement.

Introductory example: beam energy measurement



- The probability of measuring E_k when the beam energy is E_S depends on the value of E_S and the measurement method. If one knows the probability function $p(E_k; E_S)$, one can determine E_S from the measurement of the frequency distribution.
- In practice, $p(E_k; E_S)$ is only partially known, and one tries to infer $p(E_k; E_S)$ from the measured frequency distribution, which provides an estimate of E_S . In statistics, methods are employed to infer the underlying probability distributions from frequency distributions.

- A physical measurement is a random process.
- A measured quantity *x*, which represents the outcome of a random process, is called a random variable or random quantity.
- Any function of x is also a random variable.
- If the random variable can only take discrete values, there is a probability for the occurrence of each of these values, which is the probability function.
- For random variables with continuous range of values, the probability density p(x) replaces the probability function. Let Ω be a measurable set of possible values of x, whose measure is greater than zero. Then

$$\int_{\Omega} p(x) dx$$

is the probability of observing a value $x \in \Omega$.

The mathematical field of probability theory is based on Kolmogorov's Axioms.

Kolmogorov's Axioms

Let Σ denote a set of events.

- 1. For every event $A \in \Sigma$, the probability of the occurrence of A is a real number $p(A) \in [0, 1]$.
- 2. The certain event $S \in \Sigma$ has probability p(S) = 1.
- 3. The probability of the union of countably many incompatible events is equal to the sum of the probabilities of the individual events. Here, events A_k are incompatible if they are pairwise disjoint, i.e., $A_k \cap A_\ell = \emptyset$ for all $k \neq \ell$.

Characteristics of probability distributions

Remark. In this section, we consider probability densities. Probability functions of discrete variables are also covered if one considers the δ -distribution as a probability density.

Nomenclature. D: Range of values of a random variable $x = (x_1, ..., x_n)$. p(x): Probability density of x. (D is the domain of p.)

Definitions

The expectation value of x, E(x) (also $\langle x \rangle$), is defined as

$$E(x) := \int\limits_D x \cdot p(x) dx.$$

The covariance matrix $cov(x_k, x_l)$ is defined as

$$cov(x_k, x_l) := \langle (x_k - \langle x_k \rangle) \cdot (x_l - \langle x_l \rangle) \rangle.$$

The diagonal element $cov(x_k, x_k)$ is called the variance of x_k , $Var(x_k)$, and $\sqrt{Var(x_k)}$ is the standard deviation $\sigma(x_k)$.

Expectation value of a function of a random variable

• A function f(x) is also a random variable.

$$\langle f \rangle = \int_{D} f(x)p(x)dx.$$

• If $f(x) = f(x - \langle x \rangle + \langle x \rangle)$ is significantly different from 0 only for small values of $|x - \langle x \rangle|$, one can approximate f(x) by

$$f(\langle x \rangle) + \left. \frac{df}{dx} \right|_{\langle x \rangle} \cdot (x - \langle x \rangle)$$

Then

$$\langle f \rangle \approx \left\langle f(\langle x \rangle) + \frac{df}{dx} \right|_{\langle x \rangle} \cdot (x - \langle x \rangle) \right\rangle$$

$$= \langle f(x) \rangle + \left\langle \frac{df}{dx} \right|_{\langle x \rangle} \cdot (x - \langle x \rangle) \right\rangle$$

$$= \left. f(\langle x \rangle) + \frac{df}{dx} \right|_{\langle x \rangle} \cdot (\langle x \rangle - \langle x \rangle) = f(\langle x \rangle).$$

Special Case: $f(x) \in |\mathsf{R}|$.

$$\begin{aligned} \operatorname{Var}(f) &= \left\langle (f - \langle f \rangle)^2 \right\rangle = \left\langle [f - f(\langle x \rangle)] \right\rangle \\ &\approx \left\langle \left[\sum_{k=1}^n \frac{df}{dx_k} \Big|_{\langle x \rangle} \cdot (x_k - \langle x_k \rangle) \right]^2 \right\rangle \\ &= \left\langle \left[\left[\sum_{k,\ell=1}^n \frac{df}{dx_k} \Big|_{\langle x \rangle} \frac{df}{dx_\ell} \Big|_{\langle x \rangle} \cdot (x_k - \langle x_k \rangle) \cdot (x_\ell - \langle x_\ell \rangle) \right] \right\rangle \\ &= \sum_{k,\ell=1}^n \frac{df}{dx_k} \Big|_{\langle x \rangle} \frac{df}{dx_\ell} \Big|_{\langle x \rangle} \cdot \left\langle (x_k - \langle x_k \rangle) \cdot (x_\ell - \langle x_\ell \rangle) \right\rangle \\ &= \sum_{k,\ell=1}^n \frac{df}{dx_k} \Big|_{\langle x \rangle} \frac{df}{dx_\ell} \Big|_{\langle x \rangle} \cdot \operatorname{cov}(x_k, x_\ell), \end{aligned}$$

which is the well-known error propagation formula.

Examples of important probability distributions

The binomial distribution

• The binomial distribution gives the probability of observing n_k events out of a total of N events when ν_k events are expected:

$$p(n_k;\nu_k) = \binom{N}{n_k} \left(\frac{\nu_k}{N}\right)^{n_k} \left(1 - \frac{\nu_k}{N}\right)^{N-\nu_k}$$

• With $p:=\frac{\nu_k}{N}$, one obtains from

(

$$D = \frac{d}{dp} 1 = \frac{d}{dp} \sum_{n_k=0}^{N} \binom{N}{n_k} p^{n_k} (1-p)^{N-n_k}$$

$$= \sum_{n_k=0}^{N} \binom{N}{n_k} \left[n_k p^{n_k-1} (1-p)^{N-n_k} - (N-n_k) p^{n_k} (1-p)^{N-n_k-1} \right]$$

$$= \frac{1}{p} < n_k > -\frac{1}{1-p} < N-n_k > = \left(\frac{1}{p} + \frac{1}{1-p}\right) < n_k > +\frac{N}{1-p}$$

$$= \frac{1}{p(1-p)} < n_k > +\frac{N}{1-p} \Leftrightarrow < n_k > = N \cdot p = N \cdot \frac{\nu_k}{N} = \nu_k.$$

• Using the same calculation trick, one obtains $Var(n_k) = \nu_k(1 - \frac{\nu_k}{N})$.