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From analog to digital signals



Recapitulation of the previous lecture

Operational amplifiers as comparators

An operational amplifier saturates when |UP −UN | exceeds a small
range of values.

Comparators are operational amplifiers where this range has been
chosen very small.

In the ideal case:

Ua =

{
Ua,max for U1 > U2,
Ua,min for U1 < U2.

Characteristic curve:
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Recapitulation of the previous lecture

Analog-to-Digital Converter (ADC)
Two basic types of analog-to-digital converters are distinguished.

Charge-sensing analog-to-digital converter
Measurement of

Q :=

t0+∆t∫
t0

I (t)dt

and conversion of the measured value into an integer.

Amplitude sensing analog-to-digital converter
Measurement of the peak value of a signal U (t) in the interval
[t0, t0 +∆t ] and conversion of the measured value into an integer.
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Recapitulation of the previous lecture
Wilkinson’s method for charge measurement

Q

t

∆t

Input

Logical signal defining the time window

Discharging at constant currentCharging a capacitor

with the input signal

Number of oscillations=direct measure of the discharging time

Oscillator for the measurement of the discharging time (prop. to Q)
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Recapitulation of the previous lecture

Weighing method for signal amplitude measurement

Umax

reference

voltages

0

Division of the dynamic range of the
analog-to-digital converter into a series of
comparison voltages.
Conversion of the results of the voltage
comparisons into a bit pattern.
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Recapitulation of the previous lecture

Time-to-Digital Converter (TDC)
Analog signal → Comparator → Logic signal → Time measurement

Simplest approach to time measurement

Clock generator with a period T smaller than the desired time
measurement accuracy.
Continuous counting of clock cycles. Use a counter with n bits such
that 2n · T >(time intervals to be measured).
Record at which clock cycles nStart and nStop the start and stop
signals have arrived.
tStart − tStop is then measured as nStart − nStop.
If the counter overflows, one must use nStart − nStop + 1.
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Components for processing digital/logical signals



Recapitulation of the previous lecture

Logic families

As mentioned earlier there are different definitions of logic signal
levels related to different so-called “logic families”.
Still in use today (or “popular”):

Transistor-transistor logic (TTL) using bipolar transistors.
Emitter coupled logic (ECL) using bipolar transistors.
Complementary metal oxide semicondutor logic (CMOS) using
MOSFETs.
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Recapitulation of the previous lecture

Characteristic curve of a MOSFET

NMOS PMOS

MOSFETs are operated in saturation mode for logic gates.
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Recapitulation of the previous lecture

MOSFETs as switches
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Recapitulation of the previous lecture

CMOS inverter
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Recapitulation of the previous lecture

CMOS NAND and NOR

Y = A AND B Y = A OR B
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Recapitulation of the previous lecture

Logical basic functions

Two States: logical 0 and logical 1.

Logical Basic Functions

Conjunction: y = x1 ∧ x2 = x1 · x2 = x1x2.
Disjunction: y = x1 ∨ x2 = x1 + x2.
Negation: y = x̄ .
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Recapitulation of the previous lecture
Rules of Calculation
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Recapitulation of the previous lecture

Switching elements for logical basic functions

Conjunction
AND Gate

Disjunction
OR Gate

Negation
NOT Gate
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Recapitulation of the previous lecture

Method of disjunctive normal form
To establish more complex logical functions, one can use the so-called
disjunctive normal form.

n input variables x1, . . . , xn . 1 output variable y.

1. Set up a table listing all possible input values along with the desired
output value. This table is also called a truth table.

2. Identify all rows in the truth table where y = 1.

3. For each of these rows, form the conjunction of all input variables; for
xk = 1, substitute xk , otherwise x̄k .

4. The sought function is obtained by forming the disjunction of all
found product terms.
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Recapitulation of the previous lecture

Example of exclusive OR

Truth Table

Row x1 x2 y
1 1 1 0
2 1 0 1 → x1 · x̄2 =: K2

3 0 1 1 → x̄1 · x2 =: K3

4 0 0 0

Result
y = K2 +K3 = (x1 · x̄2) + (x̄1 · x2).
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Example of a 1-of-4 decoder

Truth table

Row x1 x2 y3 y2 y1 y0
1 0 0 0 0 0 1
2 0 1 0 0 1 0
3 1 0 0 1 0 0
4 1 1 1 0 0 0

Result
y0 = x̄1 · x̄2. y1 = x̄1 · x2. y2 = x1 · x̄2. y3 = x1 · x2.

Circuit
x

x

1

2
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Flip-flop as storage element

Derived Basic Functions
x1 NOR x2 := x1 + x2 = x̄1 · x̄2.
x1 NAND x2 := x1 · x2 = x̄1 + x̄2.

Flip-Flop

Q = Q̄ + R.

Q̄ = S +Q.

Setting S = R = 1 results in Q = Q̄ + 1 = 1̄ = 0 and Q̄ = 1 +Q = 1̄ = 0.
Subsequently setting R = 0 and S = 0 simultaneously leaves the output
state undefined.
Q = Q̄ + 0 = Q̄ can be 0 or 1.
Q̄ = Q + 0 = Q can be 0 or 1.
⇒ R = S = 1 is generally prohibited.
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Fundamentals of statistical treatment of experimental
data



Introductory example: beam energy measurement

Example: Measurement of the energy of a monoenergetic particle beam.

Notations

ES : actual beam energy.
N : number of measurements of beam energy.
Ek : result of the k-th measurement of beam energy.

Frequency Distributions
N small N large
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Introductory example: beam energy measurement

N small N large
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When N is large, repeating the N measurements yields (nearly) the
same frequency distribution.

In the limit N → ∞, the frequency distribution converges to the
probability distribution for the outcome of the measurement.
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Introductory example: beam energy measurement

N small N large
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The probability of measuring Ek when the beam energy is ES depends
on the value of ES and the measurement method. If one knows the
probability function p(Ek ;ES ), one can determine ES from the
measurement of the frequency distribution.

In practice, p(Ek ;ES ) is only partially known, and one tries to infer
p(Ek ;ES ) from the measured frequency distribution, which provides an
estimate of ES . In statistics, methods are employed to infer the
underlying probability distributions from frequency distributions.
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Probability distributions

A physical measurement is a random process.

A measured quantity x , which represents the outcome of a random
process, is called a random variable or random quantity.

Any function of x is also a random variable.

If the random variable can only take discrete values, there is a
probability for the occurrence of each of these values, which is the
probability function.

For random variables with continuous range of values, the probability
density p(x ) replaces the probability function. Let Ω be a measurable
set of possible values of x , whose measure is greater than zero. Then∫

Ω

p(x )dx

is the probability of observing a value x ∈ Ω.
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Axiomatic Definition of Probability

The mathematical field of probability theory is based on Kolmogorov’s
Axioms.

Kolmogorov’s Axioms

Let Σ denote a set of events.

1. For every event A ∈ Σ, the probability of the occurrence of A is a real
number p(A) ∈ [0, 1].

2. The certain event S ∈ Σ has probability p(S ) = 1.

3. The probability of the union of countably many incompatible events is
equal to the sum of the probabilities of the individual events. Here,
events Ak are incompatible if they are pairwise disjoint, i.e.,
Ak ∩Aℓ = ∅ for all k ̸= ℓ.
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Characteristics of probability distributions

Remark. In this section, we consider probability densities. Probability
functions of discrete variables are also covered if one considers
the δ-distribution as a probability density.

Nomenclature. D: Range of values of a random variable x = (x1, ..., xn).
p(x ): Probability density of x .

(D is the domain of p.)

Definitions
The expectation value of x , E (x ) (also < x >), is defined as

E (x ) :=

∫
D

x · p(x )dx .

The covariance matrix cov(xk , xl ) is defined as

cov(xk , xl ) :=< (xk− < xk >) · (xl− < xl >) > .

The diagonal element cov(xk , xk ) is called the variance of xk , Var(xk ), and√
Var(xk ) is the standard deviation σ(xk ).
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Expectation value of a function of a random variable

A function f (x ) is also a random variable.

< f >=

∫
D

f (x )p(x )dx .

If f (x ) = f (x− < x > + < x >) is significantly different from 0 only for
small values of |x− < x > |, one can approximate f (x ) by

f (< x >) +
df

dx

∣∣∣∣
<x>

· (x− < x >)

Then

< f > ≈
〈
f (< x >) +

df

dx

∣∣∣∣
<x>

· (x− < x >)

〉
= < f (x ) > +

〈
df

dx

∣∣∣∣
<x>

· (x− < x >)

〉
= f (< x >) +

df

dx

∣∣∣∣
<x>

· (< x > − < x >) = f (< x >).
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Variance of a function of a random variable

Special Case: f (x ) ∈ |R.

Var(f ) =
〈
(f− < f >)2

〉
= ⟨[f − f (< x >)]⟩

≈

〈[
n∑

k=1

df

dxk

∣∣∣∣
<x>

· (xk− < xk >)

]2〉

=

〈 n∑
k ,ℓ=1

df

dxk

∣∣∣∣
<x>

df

dxℓ

∣∣∣∣
<x>

· (xk− < xk >) · (xℓ− < xℓ >)

〉

=

n∑
k ,ℓ=1

df

dxk

∣∣∣∣
<x>

df

dxℓ

∣∣∣∣
<x>

· ⟨(xk− < xk >) · (xℓ− < xℓ >)⟩

=

n∑
k ,ℓ=1

df

dxk

∣∣∣∣
<x>

df

dxℓ

∣∣∣∣
<x>

· cov(xk , xℓ),

which is the well-known error propagation formula.
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Examples of important probability distributions



The binomial distribution

The binomial distribution gives the probability of observing nk events
out of a total of N events when νk events are expected:

p(nk ; νk ) =

(
N
nk

)(νk
N

)nk
(
1− νk

N

)N−νk
.

With p := νk
N , one obtains from

0 =
d

dp
1 =

d

dp

N∑
nk=0

(
N
nk

)
pnk (1− p)N−nk

=

N∑
nk=0

(
N
nk

)[
nkp

nk−1(1− p)N−nk − (N − nk )p
nk (1− p)N−nk−1

]
=

1

p
< nk > − 1

1− p
< N − nk >=

(
1

p
+

1

1− p

)
< nk > +

N

1− p

=
1

p(1− p)
< nk > +

N

1− p
⇔ < nk >= N · p = N · νk

N
= νk .

Using the same calculation trick, one obtains Var(nk ) = νk (1− νk
N ).
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