Concepts of Experiments at Future Colliders II

PD Dr. Oliver Kortner

17.05.2024

From analog to digital signals

Operational amplifiers as comparators

- An operational amplifier saturates when $\left|U_{P}-U_{N}\right|$ exceeds a small range of values.
- Comparators are operational amplifiers where this range has been chosen very small.

In the ideal case:

$$
U_{a}=\left\{\begin{array}{l}
U_{a, \max } \text { for } U_{1}>U_{2} \\
U_{a, \text { min }} \text { for } U_{1}<U_{2}
\end{array}\right.
$$

Characteristic curve:

Analog-to-Digital Converter (ADC)
Two basic types of analog-to-digital converters are distinguished.

- Charge-sensing analog-to-digital converter Measurement of

$$
Q:=\int_{t_{0}}^{t_{0}+\Delta t} I(t) d t
$$

and conversion of the measured value into an integer.

- Amplitude sensing analog-to-digital converter Measurement of the peak value of a signal $U(t)$ in the interval $\left[t_{0}, t_{0}+\Delta t\right]$ and conversion of the measured value into an integer.

Recapitulation of the previous lecture

Wilkinson's method for charge measurement

Input

Logical signal'defining the, time window

Charging a capacitor with the input signal

Oscillator for the measurement of the discharging time (prop. to Q)

Number of oscillations=direct measure of the discharging time

Time-to-Digital Converter (TDC)
Analog signal \rightarrow Comparator \rightarrow Logic signal \rightarrow Time measurement

Simplest approach to time measurement

- Clock generator with a period T smaller than the desired time measurement accuracy.
- Continuous counting of clock cycles. Use a counter with n bits such that $2^{n} \cdot T>$ (time intervals to be measured).
- Record at which clock cycles $n_{\text {Start }}$ and $n_{\text {Stop }}$ the start and stop signals have arrived.
$t_{\text {Start }}-t_{\text {Stop }}$ is then measured as $n_{\text {Start }}-n_{\text {Stop }}$.
If the counter overflows, one must use $n_{\text {Start }}-n_{\text {Stop }}+1$.

Components for processing digital/logical signals

Logic families

- As mentioned earlier there are different definitions of logic signal levels related to different so-called "logic families".
- Still in use today (or "popular"):
- Transistor-transistor logic (TTL) using bipolar transistors.
- Emitter coupled logic (ECL) using bipolar transistors.
- Complementary metal oxide semicondutor logic (CMOS) using MOSFETs.

Characteristic curve of a MOSFET

NMOS
PMOS

- MOSFETs are operated in saturation mode for logic gates.

MOSFETs as switches

$$
\mathbb{V}_{G S}>V_{T}
$$

PMOS

CMOS inverter

Recapitulation of the previous lecture

CMOS NAND and NOR

$$
Y=\overline{A A N D B}
$$

$$
Y=\overline{A O R B}
$$

Logical basic functions
Two States: logical 0 and logical 1.
Logical Basic Functions

- Conjunction: $y=x_{1} \wedge x_{2}=x_{1} \cdot x_{2}=x_{1} x_{2}$.
- Disjunction: $y=x_{1} \vee x_{2}=x_{1}+x_{2}$.
- Negation: $y=\bar{x}$.

Recapitulation of the previous lecture

Rules of Calculation

Kommutatives Gesetz:

$x_{1} x_{2}=x_{2} x_{1}$
Assoziatives Gesetz:
$x_{1}\left(x_{2} x_{3}\right)=\left(x_{1} x_{2}\right) x_{3}$
Distributives Gesetz:
$x_{1}\left(x_{2}+x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}$

Absorptionsgesetz:
$x_{1}\left(x_{1}+x_{2}\right)=x_{1}$
Tautologie:
$x x=x$
Gesetz für die Negation $x \bar{x}=0$

Doppelte Negation:
$\overline{(\bar{x})}=x$
De Morgans Gesetz:
$\overline{x_{1} x_{2}}=\bar{x}_{1}+\bar{x}_{2}$
Operationen mit 0 und 1 :
$x \cdot 1=x$
$x \cdot 0=0$

$$
\begin{aligned}
& x+0=x \\
& x_{1}+x_{2}=x_{2}+x_{1} \\
& x_{1}+\left(x_{2}+x_{3}\right) \\
& =\left(x_{1}+x_{2}\right)+x_{3} \\
& x_{1}+x_{2} x_{3} \\
& =\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right) \\
& x_{1}+x_{1} x_{2}=x_{1} \\
& x+x=x \\
& x+\bar{x}=1 \\
& \overline{x_{1}+x_{2}}=\bar{x}_{1} \bar{x}_{2} \\
& x+1=1
\end{aligned}
$$

Switching elements for logical basic functions

Method of disjunctive normal form
To establish more complex logical functions, one can use the so-called disjunctive normal form.
n input variables x_{1}, \ldots, x_{n}. 1 output variable y.

1. Set up a table listing all possible input values along with the desired output value. This table is also called a truth table.
2. Identify all rows in the truth table where $y=1$.
3. For each of these rows, form the conjunction of all input variables; for $x_{k}=1$, substitute x_{k}, otherwise \bar{x}_{k}.
4. The sought function is obtained by forming the disjunction of all found product terms.

Example of exclusive OR

Truth Table

Row	x_{1}	x_{2}	y	
1	1	1	0	
2	1	0	1	$\rightarrow x_{1} \cdot \bar{x}_{2}=: K_{2}$
3	0	1	1	$\rightarrow \bar{x}_{1} \cdot x_{2}=: K_{3}$
4	0	0	0	

Result

$$
y=K_{2}+K_{3}=\left(x_{1} \cdot \bar{x}_{2}\right)+\left(\bar{x}_{1} \cdot x_{2}\right)
$$

Example of a 1-of-4 decoder

Truth table

Row	x_{1}	x_{2}	y_{3}	y_{2}	y_{1}	y_{0}
1	0	0	0	0	0	1
2	0	1	0	0	1	0
3	1	0	0	1	0	0
4	1	1	1	0	0	0

Result

$$
y_{0}=\bar{x}_{1} \cdot \bar{x}_{2} \cdot y_{1}=\bar{x}_{1} \cdot x_{2} \cdot y_{2}=x_{1} \cdot \bar{x}_{2} \cdot y_{3}=x_{1} \cdot x_{2} .
$$

Circuit

Derived Basic Functions

$$
\begin{aligned}
& x_{1} \text { NOR } x_{2}:=\overline{x_{1}+x_{2}}=\bar{x}_{1} \cdot \bar{x}_{2} . \sqrt{x}^{0-r} \\
& x_{1} \text { NAND } x_{2}:=\overline{x_{1} \cdot x_{2}}=\bar{x}_{1}+\bar{x}_{2} .
\end{aligned}
$$

Flip-Flop

S	R	Q	\bar{Q}		
0	0	Q_{-1}	\bar{Q}_{-1}		
0	1	0	1		(bisheriger Zustand)
1	0	1	0		(Setzen: 1\|0) $0 \mid 1$)
1	1	(0)	(0)		

Setting $S=R=1$ results in $Q=\overline{\bar{Q}+1}=\overline{1}=0$ and $\bar{Q}=\overline{1+Q}=\overline{1}=0$. Subsequently setting $R=0$ and $S=0$ simultaneously leaves the output state undefined.
$Q=\overline{\bar{Q}+0}=\overline{\bar{Q}}$ can be 0 or 1 .
$\bar{Q}=\overline{Q+0}=\bar{Q}$ can be 0 or 1 .
$\Rightarrow R=S=1$ is generally prohibited.

Fundamentals of statistical treatment of experimental data

Example: Measurement of the energy of a monoenergetic particle beam.
Notations
E_{S} : actual beam energy.
N : number of measurements of beam energy.
E_{k} : result of the k-th measurement of beam energy.
Frequency Distributions

N large

N large

- When N is large, repeating the N measurements yields (nearly) the same frequency distribution.
- In the limit $N \rightarrow \infty$, the frequency distribution converges to the probability distribution for the outcome of the measurement.

N large

- The probability of measuring E_{k} when the beam energy is E_{S} depends on the value of E_{S} and the measurement method. If one knows the probability function $p\left(E_{k} ; E_{S}\right)$, one can determine E_{S} from the measurement of the frequency distribution.
- In practice, $p\left(E_{k} ; E_{S}\right)$ is only partially known, and one tries to infer $p\left(E_{k} ; E_{S}\right)$ from the measured frequency distribution, which provides an estimate of E_{S}. In statistics, methods are employed to infer the underlying probability distributions from frequency distributions.
- A physical measurement is a random process.
- A measured quantity x, which represents the outcome of a random process, is called a random variable or random quantity.
- Any function of x is also a random variable.
- If the random variable can only take discrete values, there is a probability for the occurrence of each of these values, which is the probability function.
- For random variables with continuous range of values, the probability density $p(x)$ replaces the probability function. Let Ω be a measurable set of possible values of x, whose measure is greater than zero. Then

$$
\int_{\Omega} p(x) d x
$$

is the probability of observing a value $x \in \Omega$.

Axiomatic Definition of Probability

The mathematical field of probability theory is based on Kolmogorov's Axioms.

Kolmogorov's Axioms

Let Σ denote a set of events.

1. For every event $A \in \Sigma$, the probability of the occurrence of A is a real number $p(A) \in[0,1]$.
2. The certain event $S \in \Sigma$ has probability $p(S)=1$.
3. The probability of the union of countably many incompatible events is equal to the sum of the probabilities of the individual events. Here, events A_{k} are incompatible if they are pairwise disjoint, i.e., $A_{k} \cap A_{\ell}=\emptyset$ for all $k \neq \ell$.

Characteristics of probability distributions

Remark. In this section, we consider probability densities. Probability functions of discrete variables are also covered if one considers the δ-distribution as a probability density.

Nomenclature. D : Range of values of a random variable $x=\left(x_{1}, \ldots, x_{n}\right)$.
$p(x)$: Probability density of x.
(D is the domain of p.)

Definitions

The expectation value of $x, E(x)$ (also $<x>$), is defined as

$$
E(x):=\int_{D} x \cdot p(x) d x
$$

The covariance matrix $\operatorname{cov}\left(x_{k}, x_{l}\right)$ is defined as

$$
\operatorname{cov}\left(x_{k}, x_{l}\right):=<\left(x_{k}-<x_{k}>\right) \cdot\left(x_{l}-<x_{l}>\right)>.
$$

The diagonal element $\operatorname{cov}\left(x_{k}, x_{k}\right)$ is called the variance of $x_{k}, \operatorname{Var}\left(x_{k}\right)$, and $\sqrt{\operatorname{Var}\left(x_{k}\right)}$ is the standard deviation $\sigma\left(x_{k}\right)$.

- A function $f(x)$ is also a random variable.

$$
<f>=\int_{D} f(x) p(x) d x
$$

- If $f(x)=f(x-<x>+<x>)$ is significantly different from 0 only for small values of $|x-<x\rangle \mid$, one can approximate $f(x)$ by

$$
f(<x>)+\left.\frac{d f}{d x}\right|_{<x>} \cdot(x-<x>)
$$

Then

$$
\begin{aligned}
<f> & \approx\left\langle f(<x>)+\left.\frac{d f}{d x}\right|_{<x>} \cdot(x-<x>)\right\rangle \\
& =<f(x)>+\left\langle\left.\frac{d f}{d x}\right|_{<x>} \cdot(x-<x>)\right\rangle \\
& =f(<x>)+\left.\frac{d f}{d x}\right|_{<x>} \cdot(<x>-<x>)=f(<x>)
\end{aligned}
$$

Variance of a function of a random variable

Special Case: $f(x) \in \mid \mathbf{R}$.

$$
\begin{aligned}
\operatorname{Var}(f) & \left.=\left\langle(f-<f>)^{2}\right\rangle=\langle[f-f(<x\rangle)]\right\rangle \\
& \approx\left\langle\left[\left.\sum_{k=1}^{n} \frac{d f}{d x_{k}}\right|_{<x>} \cdot\left(x_{k}-<x_{k}>\right)\right]^{2}\right\rangle \\
& \left.\left.=\left\langle\left[\left.\left.\sum_{k, \ell=1}^{n} \frac{d f}{d x_{k}}\right|_{<x\rangle} \frac{d f}{d x_{\ell}}\right|_{<x\rangle} \cdot\left(x_{k}-<x_{k}\right\rangle\right) \cdot\left(x_{\ell}-<x_{\ell}\right\rangle\right)\right]\right\rangle \\
& \left.\left.=\left.\left.\sum_{k, \ell=1}^{n} \frac{d f}{d x_{k}}\right|_{<x\rangle} \frac{d f}{d x_{\ell}}\right|_{<x\rangle} \cdot\left\langle\left(x_{k}-<x_{k}\right\rangle\right) \cdot\left(x_{\ell}-<x_{\ell}\right\rangle\right)\right\rangle \\
& =\left.\left.\sum_{k, \ell=1}^{n} \frac{d f}{d x_{k}}\right|_{<x\rangle} \frac{d f}{d x_{\ell}}\right|_{\langle x\rangle} \cdot \operatorname{cov}\left(x_{k}, x_{\ell}\right),
\end{aligned}
$$

which is the well-known error propagation formula.

The binomial distribution

- The binomial distribution gives the probability of observing n_{k} events out of a total of N events when ν_{k} events are expected:

$$
p\left(n_{k} ; \nu_{k}\right)=\binom{N}{n_{k}}\left(\frac{\nu_{k}}{N}\right)^{n_{k}}\left(1-\frac{\nu_{k}}{N}\right)^{N-\nu_{k}} .
$$

- With $p:=\frac{\nu_{k}}{N}$, one obtains from

$$
\begin{aligned}
0 & =\frac{d}{d p} 1=\frac{d}{d p} \sum_{n_{k}=0}^{N}\binom{N}{n_{k}} p^{n_{k}}(1-p)^{N-n_{k}} \\
& =\sum_{n_{k}=0}^{N}\binom{N}{n_{k}}\left[n_{k} p^{n_{k}-1}(1-p)^{N-n_{k}}-\left(N-n_{k}\right) p^{n_{k}}(1-p)^{N-n_{k}-1}\right] \\
& =\frac{1}{p}<n_{k}>-\frac{1}{1-p}<N-n_{k}>=\left(\frac{1}{p}+\frac{1}{1-p}\right)<n_{k}>+\frac{N}{1-p} \\
& =\frac{1}{p(1-p)}<n_{k}>+\frac{N}{1-p} \Leftrightarrow<n_{k}>=N \cdot p=N \cdot \frac{\nu_{k}}{N}=\nu_{k}
\end{aligned}
$$

- Using the same calculation trick, one obtains $\operatorname{Var}\left(n_{k}\right)=\nu_{k}\left(1-\frac{\nu_{k}}{N}\right)$.

