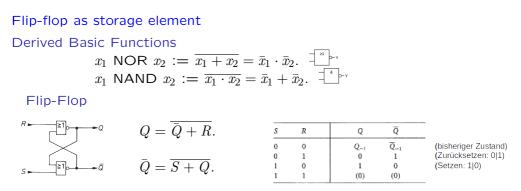
# Concepts of Experiments at Future Colliders II

PD Dr. Oliver Kortner

31.05.2024



Setting S = R = 1 results in  $Q = \overline{Q+1} = \overline{1} = 0$  and  $\overline{Q} = \overline{1+Q} = \overline{1} = 0$ . Subsequently setting R = 0 and S = 0 simultaneously leaves the output state undefined.

$$\begin{array}{l} Q = \overline{\overline{Q} + 0} = \overline{\overline{Q}} \text{ can be 0 or 1.} \\ \overline{Q} = \overline{Q + 0} = \overline{Q} \text{ can be 0 or 1.} \\ \Rightarrow R = S = 1 \text{ is generally prohibited.} \end{array}$$

# Fundamentals of statistical treatment of experimental data

Introductory example: beam energy measurement

Example: Measurement of the energy of a monoenergetic particle beam. Notations

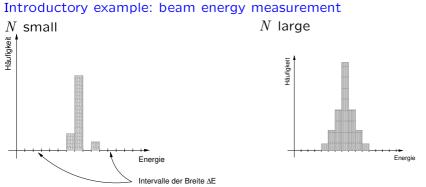
 $E_S$ : actual beam energy.

*N*: number of measurements of beam energy.

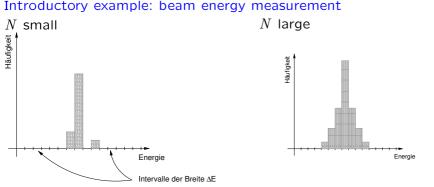
 $E_k$ : result of the k-th measurement of beam energy.



### **Frequency Distributions**



- When N is large, repeating the N measurements yields (nearly) the same frequency distribution.
- In the limit  $N \to \infty$ , the frequency distribution converges to the probability distribution for the outcome of the measurement.



- The probability of measuring  $E_k$  when the beam energy is  $E_S$  depends on the value of  $E_S$  and the measurement method. If one knows the probability function  $p(E_k; E_S)$ , one can determine  $E_S$  from the measurement of the frequency distribution.
- In practice,  $p(E_k; E_S)$  is only partially known, and one tries to infer  $p(E_k; E_S)$  from the measured frequency distribution, which provides an estimate of  $E_S$ . In statistics, methods are employed to infer the underlying probability distributions from frequency distributions.

### Probability distributions

- A physical measurement is a random process.
- A measured quantity *x*, which represents the outcome of a random process, is called a random variable or random quantity.
- Any function of x is also a random variable.
- If the random variable can only take discrete values, there is a probability for the occurrence of each of these values, which is the probability function.
- For random variables with continuous range of values, the probability density p(x) replaces the probability function. Let  $\Omega$  be a measurable set of possible values of x, whose measure is greater than zero. Then

$$\int_{\Omega} p(x) dx$$

is the probability of observing a value  $x \in \Omega$ .

### Axiomatic Definition of Probability

The mathematical field of probability theory is based on Kolmogorov's Axioms.

### Kolmogorov's Axioms

Let  $\Sigma$  denote a set of events.

- 1. For every event  $A \in \Sigma$ , the probability of the occurrence of A is a real number  $p(A) \in [0, 1]$ .
- 2. The certain event  $S \in \Sigma$  has probability p(S) = 1.
- 3. The probability of the union of countably many incompatible events is equal to the sum of the probabilities of the individual events. Here, events  $A_k$  are incompatible if they are pairwise disjoint, i.e.,  $A_k \cap A_\ell = \emptyset$  for all  $k \neq \ell$ .

### Characteristics of probability distributions

Remark. In this section, we consider probability densities. Probability functions of discrete variables are also covered if one considers the  $\delta$ -distribution as a probability density.

Nomenclature. D: Range of values of a random variable  $x = (x_1, ..., x_n)$ . p(x): Probability density of x.

(D is the domain of p.)

### Definitions

The expectation value of x, E(x) (also  $\langle x \rangle$ ), is defined as

$$E(x) := \int_{D} x \cdot p(x) dx.$$

The covariance matrix  $cov(x_k, x_l)$  is defined as

$$cov(x_k, x_l) := < (x_k - < x_k >) \cdot (x_l - < x_l >) > .$$

The diagonal element  $cov(x_k, x_k)$  is called the variance of  $x_k$ ,  $Var(x_k)$ , and  $\sqrt{Var(x_k)}$  is the standard deviation  $\sigma(x_k)$ .

Expectation value of a function of a random variable

• A function f(x) is also a random variable.

$$\langle f \rangle = \int_{D} f(x)p(x)dx.$$

• If  $f(x) = f(x - \langle x \rangle + \langle x \rangle)$  is significantly different from 0 only for small values of  $|x - \langle x \rangle|$ , one can approximate f(x) by

$$f(\langle x \rangle) + \left. \frac{df}{dx} \right|_{\langle x \rangle} \cdot (x - \langle x \rangle)$$

Then

Variance of a function of a random variable Special Case:  $f(x) \in |\mathbb{R}$ .

$$\begin{aligned} \operatorname{Var}(f) &= \left\langle (f - \langle f \rangle)^2 \right\rangle = \left\langle [f - f(\langle x \rangle)] \right\rangle \\ &\approx \left\langle \left[ \sum_{k=1}^n \frac{df}{dx_k} \Big|_{\langle x \rangle} \cdot (x_k - \langle x_k \rangle) \right]^2 \right\rangle \\ &= \left\langle \left[ \left[ \sum_{k,\ell=1}^n \frac{df}{dx_k} \Big|_{\langle x \rangle} \cdot \frac{df}{dx_\ell} \Big|_{\langle x \rangle} \cdot (x_k - \langle x_k \rangle) \cdot (x_\ell - \langle x_\ell \rangle) \right] \right\rangle \\ &= \sum_{k,\ell=1}^n \frac{df}{dx_k} \Big|_{\langle x \rangle} \frac{df}{dx_\ell} \Big|_{\langle x \rangle} \cdot \left\langle (x_k - \langle x_k \rangle) \cdot (x_\ell - \langle x_\ell \rangle) \right\rangle \\ &= \sum_{k,\ell=1}^n \frac{df}{dx_k} \Big|_{\langle x \rangle} \frac{df}{dx_\ell} \Big|_{\langle x \rangle} \cdot \operatorname{cov}(x_k, x_\ell), \end{aligned}$$

which is the well-known error propagation formula.

# Examples of important probability distributions

# The binomial distribution

• The binomial distribution gives the probability of observing  $n_k$  events out of a total of N events when  $\nu_k$  events are expected:

$$p(n_k;\nu_k) = \binom{N}{n_k} \left(\frac{\nu_k}{N}\right)^{n_k} \left(1 - \frac{\nu_k}{N}\right)^{N-\nu_k}$$

• With  $p:=\frac{\nu_k}{N}$ , one obtains from

(

$$D = \frac{d}{dp} 1 = \frac{d}{dp} \sum_{n_k=0}^{N} \binom{N}{n_k} p^{n_k} (1-p)^{N-n_k}$$

$$= \sum_{n_k=0}^{N} \binom{N}{n_k} \left[ n_k p^{n_k-1} (1-p)^{N-n_k} - (N-n_k) p^{n_k} (1-p)^{N-n_k-1} \right]$$

$$= \frac{1}{p} < n_k > -\frac{1}{1-p} < N-n_k > = \left(\frac{1}{p} + \frac{1}{1-p}\right) < n_k > +\frac{N}{1-p}$$

$$= \frac{1}{p(1-p)} < n_k > +\frac{N}{1-p} \Leftrightarrow < n_k > = N \cdot p = N \cdot \frac{\nu_k}{N} = \nu_k.$$

• Using the same calculation trick, one obtains  $Var(n_k) = \nu_k(1 - \frac{\nu_k}{N})$ .

# Transition to the Poisson distribution

If  $\nu \gtrsim 10$ ,  $\nu \ll N$  u=and N are large, one can approximate it by the Poission distribution. The approximation is a results of the Stirling formula:

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \ f \ddot{u}r \ n \to \infty.$$

$$\begin{split} p(n_k;\nu_k) &= \frac{N!}{n_k!(N-n_k)!} p^{n_k} (1-p)^{N-n_k} \\ &\approx \frac{1}{n_k!} p^{n_k} \left(\frac{N}{e}\right)^N \sqrt{2\pi N} \frac{1}{\left(\frac{N-n_k}{e}\right)^{N-n_k} \sqrt{2\pi (N-n_k)}} (1-p)^{N-n_k} \\ &= \frac{1}{n_k} p^{n_k} e^{-n_k} \sqrt{\frac{N}{N-n_k}} \frac{N^N}{(N-n_k)^{N-n_k}} (1-p)^{N-n_k} \\ &\approx \frac{1}{n_k!} e^{-n_k} p^{n_k} N^{n_k} N^{N-n_k} (1-p)^{N-n_k} \frac{1}{(N-n_k)^{N-n_k}} \\ &= \frac{\nu_k}{n_k!} e^{-n_k} \frac{(N-\nu_k)^{N-n_k}}{(N-n_k)^{N-n_k}} \approx \frac{\nu_k^{n_k}}{n_k!} e^{-\nu_k} \text{ (Poisson distribution).} \end{split}$$

### Properties of the Poisson distribution

#### Poisson distribution

$$p(n_k; 
u_k) = rac{
u_k^{n_k}}{n_k!} e^{-
u_k}.$$

#### Normalization

$$\sum_{n_k=0}^{\infty} p(n_k; \nu_k) = e^{-\nu_k} \sum_{n_k=0}^{\infty} \frac{\nu_k^{n_k}}{n_k!} = e^{-\nu_k} \cdot e^{\nu_k} = 1.$$

Expectation value:  $\nu_k$ , resulting from  $0 = \frac{d}{d\nu_k} \sum_{n_k=0}^{\infty} p(n_k; \nu_k)$ .

Variance:  $\nu_k$ , resulting from  $0 = \frac{d^2}{d\nu_k^2} \sum_{n_k=0}^{\infty} p(n_k; \nu_k)$ .

### Poisson distribution for $\nu_k \rightarrow \infty$

When  $\nu_k$  becomes large, the probability of the occurrence of small values of  $n_k$  is small. Then  $n_k$  can be considered large, and for  $n_k$ ! in the Poisson distribution, Stirling's approximation can be used:

$$\begin{aligned} \frac{\nu_k^{n_k}}{n_k!} e^{-\nu_k} &\approx \frac{\nu_k^{n_k}}{n_k^{n_k}} \frac{1}{\sqrt{2\pi n_k}} e^{n_k - \nu_k} \\ &\approx \frac{1}{\sqrt{2\pi \nu_k}} \exp\left(\ln \frac{\nu_k^{n_k}}{n_k^{n_k}}\right) \exp(n_k - \nu_k) \\ &= \frac{1}{\sqrt{2\pi \nu_k}} \exp\left(n_k \ln \frac{\nu_k}{\nu_k + n_k - \nu_k}\right) \exp(n_k - \nu_k) \\ &= \frac{1}{\sqrt{2\pi \nu_k}} \exp\left(n_k \ln \frac{1}{1 - \frac{n_k - \nu_k}{\nu_k}}\right) \exp(n_k - \nu_k) \\ &\approx \frac{1}{\sqrt{2\pi \nu_k}} \exp\left[n_k \cdot \left(-\frac{n_k - \nu_k}{\nu_k} - \frac{1}{2} \frac{(n_k - \nu_k)^2}{\nu_k^2}\right)\right] \exp(n_k - \nu_k) \\ &\approx \frac{1}{\sqrt{2\pi \nu_k}} e^{-\frac{(n_k - \nu_k)^2}{2\nu_k}}. \end{aligned}$$

## The normal distribution

Normal distribution of a one-dimensional random variable  $x \in \mathbb{R}$ 

$$p(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

•  $< x >= \mu$ ,  $Var(x) = \sigma^2$ .

• The Poisson distribution approaches a normal distribution in the limit  $\nu_k \rightarrow \infty$  with the expected value  $\nu_k$  and the variance  $\nu_k$ .

Normal distribution of a d-dimensional random variable  $x \in \mathbb{R}^d$ 

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{d/2}} \frac{1}{\det(\Sigma)} \exp\left(-\frac{1}{2}(x-\mu)^t \Sigma(x-\mu)\right).$$
$$\Sigma \in \mathbb{R}^{d \times d}, \ \mu \in \mathbb{R}^d.$$

• 
$$\langle x \rangle = \mu$$
.  
•  $cov(x_k, x_l) = \Sigma_{k,l}$ 

### Properties of the one-dimensional normal distribution

 $w_n :=$  Probability of observing a value  $x \in [\mu - n\sigma, \mu + n\sigma]$ .

| $n \mid w_n$                                          | 211             |
|-------------------------------------------------------|-----------------|
| 1 0.6827                                              | $\frac{w_n}{2}$ |
| 2 0.9545                                              | 0.900           |
| 3 0.9973                                              | 0.950           |
|                                                       | 0.990           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0.999           |

 $(t_n)$  is a sequence of random variables and T is also a random variable. We say  $t_n$  converges stochastically to T if for every  $p \in [0, 1[$  and  $\epsilon > 0$ , there exists an N such that the probability P that  $|t_n - T| > \epsilon$  is less than p for all n > N:

$$P(|t_n - T| > \epsilon) N).$$

In other words: The probability of observing a value  $t_n$  different from T vanishes as  $n \to \infty$ .

# Law of large numbers. Central limit theorem

#### The law of large numbers

 $(x_n)$  is a sequence of independent random variables, each following the same distribution function.  $\mu$  denotes the expected value of  $x_n.$  Then the arithmetic mean

$$\frac{1}{N}\sum_{n=1}^{N}x_n$$

converges stochastically to  $\mu$ .

### The central limit theorem

 $(x_n)$  is a sequence of identically distributed random variables with mean  $\mu$  and standard deviation  $\sigma.$  Then as  $N\to\infty,$  the standardized random variable

$$Z_N := \frac{\sum\limits_{n=1}^N x_n - N\mu}{\sigma\sqrt{N}}$$

converges pointwise to a normal distribution with mean 0 and standard deviation 1.

## Point estimation

Let  $\alpha$  be a parameter of a probability distribution. The goal of point estimation is to find the best estimate (the best measurement in the terminology of physicists) of  $\alpha$ .

x: Random variable corresponding to the experimental measurements.  $p(x; \alpha)$ : Probability density for the measurement of x as a function of the parameter  $\alpha$ .

x and  $\alpha$  can be multidimensional.

Definition. A point estimator  $\mathcal{E}_{\alpha}$  is a function of x used to estimate the value of the parameter  $\alpha$ . Let  $\hat{\alpha}$  denote this estimate. Thus,  $\hat{\alpha} = \mathcal{E}_{\alpha}(x)$ .

Goal is to find a function  $\mathcal{E}_{\alpha}$  such that  $\hat{\alpha}$  is as close as possible to the true value of  $\alpha$ .

Since  $\hat{\alpha}$  is a function of random variables,  $\hat{\alpha}$  itself is a random variable.

$$p(\hat{\alpha}) = \int_{D} \mathcal{E}_{\alpha}(x) p(x; \alpha) dx,$$

where  $\alpha$  denotes the true value of the parameter.

### Consistency

n: Number of measurements used for the point estimation.

- $\hat{\alpha}_n$ : Corresponding estimate.
- $\alpha_0$ : True value of  $\alpha$ .

 $\mathcal{E}_{\alpha}$  is called a consistent point estimator if  $\hat{\alpha}_n$  converges stochastically to  $\alpha_0$ . This means that the probability of estimating a value different from  $\alpha_0$  goes to 0 as  $n \to \infty$ .

### Unbiasedness

The bias of an estimate  $\hat{\alpha}$  is defined as

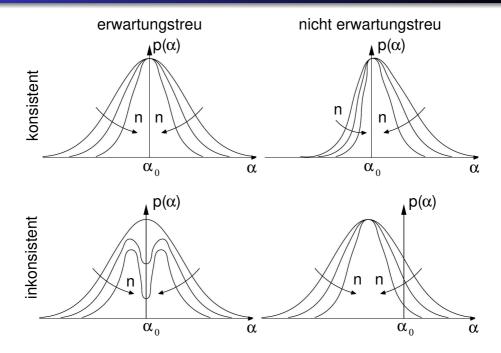
$$b_n(\hat{\alpha}) := E(\hat{\alpha}_n - \alpha_0) = E(\hat{\alpha}_n) - \alpha_0.$$

The point estimator is unbiased if

$$b_n(\hat{\alpha}) = 0$$
, or  $E(\hat{\alpha}_n) = \alpha_0$ 

for all n.

# Illustration of Consistency and Unbiasedness



### Efficiency

Let  $V_{min}$  be the minimum possible variance among all point estimators of a real-valued parameter. The efficiency of a particular point estimator is given by the ratio  $\frac{V_{min}}{Var(\hat{\alpha})}$ , where  $Var(\hat{\alpha})$  is the variance of  $\hat{\alpha}$  for that point estimator.

#### Sufficiency

Any function of data x is called a statistic. A sufficient statistic for  $\alpha$  is a function of the data that contains all the information about  $\alpha$ .

# Point estimators used in high energy physics

 $p(x; \alpha)$ : Probability of obtaining the measured values x given a parameter  $\alpha$ .

- Substituting the measured values x into the function  $p(x; \alpha)$  yields a statistic of x, which is called the likelihood or the likelihood function  $L(x; \alpha)$ .
- The term likelihood is used to indicate the relationship with the probability density  $p(x; \alpha)$  while making it clear that L is not a probability function.

Let  $f(x_k; \alpha)$  be the probability density for the outcome of a single measurement  $x_k$ . With n independent measurements  $x = (x_1, \ldots, x_n)$ , we have

$$L(x_1,\ldots,x_n;\alpha)=\prod_{k=1}^n f(x_k;\alpha).$$

In the method of maximum likelihood, the estimate for  $\alpha$  is taken as the value of  $\alpha$  that maximizes  $L(x; \alpha)$ .

# Asymptotic behavior of maximum likelihood

#### $n \to \infty$

- The point estimator is consistent.
- The point estimator is efficient.
- $\hat{\alpha}$  is normally distributed.
- Due to consistency, the point estimator is asymptotically unbiased.

#### Finite n

To determine the behavior of the point estimator with limited data size n, experimental practice uses ensembles of randomly generated simulated data to which the point estimator is applied.

*n* measurements  $x_1, \ldots, x_n$ .

 $E(x_k; \alpha)$ : Expectation value of  $x_k$  given  $\alpha$  (theoretical predictionffor the value of  $x_k$ ).

 $V = (cov(x_k, x_\ell))$ : Covariance matrix. In general, V is also a function of  $\alpha$ .

$$Q^{2} := \sum_{k,\ell=1}^{n} \left[ x_{k} - E(x_{k};\alpha) \right] V_{k\ell}^{-1}(\alpha) \left[ x_{\ell} - E(x_{\ell};\alpha) \right].$$

In the method of least squares, the estimate for  $\alpha$  is chosen as the value for which  $Q^2$  is minimized.

Remark. If  $V_{k\ell}(\alpha)$  is unbounded, we may obtain nonsensical results for  $\alpha$ . For example, if  $V_{k\ell}(\alpha) \to \infty$  as  $\alpha \to \alpha_{\text{non-sense}}$  and  $x_k - E(x_k; \alpha)$  remains bounded, the minimization yields  $\alpha_{\text{non-sense}}$ . In practice,  $Q^2$  is often minimized iteratively. One starts with an estimate for V and varies V during the minimization of  $Q^2$ . Then, V is recalculated for the obtained estimate of  $\alpha$ , and the minimization is repeated with V fixed until  $\hat{\alpha}$  no longer changes significantly.