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Examples of important probability distributions



Recapitulation of the previous lecture
The binomial distribution

The binomial distribution gives the probability of observing nk events
out of a total of N events when νk events are expected:

p(nk ; νk ) =

(
N
nk

)(νk
N

)nk
(
1− νk

N

)N−νk
.

With p := νk
N , one obtains from

0 =
d

dp
1 =

d

dp

N∑
nk=0

(
N
nk

)
pnk (1− p)N−nk

=

N∑
nk=0

(
N
nk

)[
nkp

nk−1(1− p)N−nk − (N − nk )p
nk (1− p)N−nk−1

]
=

1

p
< nk > − 1

1− p
< N − nk >=

(
1

p
+

1

1− p

)
< nk > +

N

1− p

=
1

p(1− p)
< nk > +

N

1− p
⇔ < nk >= N · p = N · νk

N
= νk .

Using the same calculation trick, one obtains Var(nk ) = νk (1− νk
N ).
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Recapitulation of the previous lecture
Transition to the Poisson distribution
If ν ≳ 10, ν ≪ N u=and N are large, one can approximate it by the
Poission distribution. The approximation is a results of the Stirling
formula:

n! ≈
(n
e

)n √
2πn f ür n → ∞.

p(nk ; νk ) =
N !

nk !(N − nk )!
pnk (1− p)N−nk

≈ 1

nk !
pnk

(
N

e

)N √
2πN

1(
N−nk

e

)N−nk √
2π(N − nk )

(1− p)N−nk

=
1

nk
pnk e−nk

√
N

N − nk︸ ︷︷ ︸
→1 f . N→∞

NN

(N − nk )N−nk
(1− p)N−nk

≈ 1

nk !
e−nkpnkN nkNN−nk (1− p)N−nk

1

(N − nk )N−nk

=
νk
nk !

e−nk
(N − νk )

N−nk

(N − nk )N−nk
≈

νnk
k

nk !
e−νk (Poisson distribution).

4 4



Recapitulation of the previous lecture

Properties of the Poisson distribution

Poisson distribution

p(nk ; νk ) =
νnk
k

nk !
e−νk .

Normalization

∞∑
nk=0

p(nk ; νk ) = e−νk

∞∑
nk=0

νnk
k

nk !
= e−νk · eνk = 1.

Expectation value: νk , resulting from 0 = d
dνk

∞∑
nk=0

p(nk ; νk ).

Variance: νk , resulting from 0 = d2

dν2k

∞∑
nk=0

p(nk ; νk ).
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Recapitulation of the previous lecture
When νk becomes large, the probability of the occurrence of small values
of nk is small. Then nk can be considered large, and for nk ! in the Poisson
distribution, Stirling’s approximation can be used:

νnk
k

nk !
e−νk ≈

νnk
k

nnk
k

1√
2πnk

enk−νk

≈ 1√
2πνk

exp

(
ln

νnk
k

nnk
k

)
exp(nk − νk )

=
1√
2πνk

exp

(
nk ln

νk
νk + nk − νk

)
exp(nk − νk )

=
1√
2πνk

exp

(
nk ln

1

1− nk−νk
νk

)
exp(nk − νk )

≈ 1√
2πνk

exp

[
nk ·

(
−nk − νk

νk
− 1

2

(nk − νk )
2

ν2k

)]
︸ ︷︷ ︸

≈−(nk−νk )−
(nk−νk )

2

2νk

exp(nk − νk )

≈ 1√
2πνk

e
− (nk−νk )

2

2νk .
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Recapitulation of the previous lecture

The normal distribution

Normal distribution of a one-dimensional random variable x ∈ R

p(x ;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 .

< x >= µ, Var(x ) = σ2.
The Poisson distribution approaches a normal distribution in the limit
νk → ∞ with the expected value νk and the variance νk .

Normal distribution of a d-dimensional random variable x ∈ Rd

p(x ;µ,Σ) =
1

(2π)d/2
1

det(Σ)
exp

(
−1

2
(x − µ)tΣ(x − µ)

)
.

Σ ∈ Rd×d , µ ∈ Rd .

< x >= µ.
cov(xk , xl ) = Σk ,l .
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Recapitulation of the previous lecture

Properties of the one-dimensional normal distribution
wn := Probability of observing a value x ∈ [µ− nσ, µ+ nσ].

n wn

1 0.6827
2 0.9545
3 0.9973
4 1− 6.3 · 10−5

5 1− 5.7 · 10−7

wn n

0.900 1.645
0.950 1.960
0.990 2.576
0.999 3.290
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Recapitulation of the previous lecture

Concept of stochastic convergence
(tn) is a sequence of random variables and T is also a random variable. We
say tn converges stochastically to T if for every p ∈ [0, 1[ and ϵ > 0, there
exists an N such that the probability P that |tn − T | > ϵ is less than p for
all n > N :

P(|tn − T | > ϵ) < p (n > N ).

In other words: The probability of observing a value tn different from T
vanishes as n → ∞.
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Recapitulation of the previous lecture
Law of large numbers. Central limit theorem
The law of large numbers
(xn) is a sequence of independent random variables, each following the
same distribution function. µ denotes the expected value of xn . Then the
arithmetic mean

1

N

N∑
n=1

xn

converges stochastically to µ.
The central limit theorem
(xn) is a sequence of identically distributed random variables with mean µ
and standard deviation σ. Then as N → ∞, the standardized random
variable

ZN :=

N∑
n=1

xn −Nµ

σ
√
N

converges pointwise to a normal distribution with mean 0 and standard
deviation 1.
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Recapitulation of the previous lecture
Point estimation
Let α be a parameter of a probability distribution. The goal of point
estimation is to find the best estimate (the best measurement in the
terminology of physicists) of α.

x : Random variable corresponding to the experimental measurements.
p(x ;α): Probability density for the measurement of x as a function of the

parameter α.

x and α can be multidimensional.

Definition. A point estimator Eα is a function of x used to estimate the
value of the parameter α. Let α̂ denote this estimate. Thus, α̂ = Eα(x ).

Goal is to find a function Eα such that α̂ is as close as possible to the true
value of α.

Since α̂ is a function of random variables, α̂ itself is a random variable.

p(α̂) =

∫
D

Eα(x )p(x ;α)dx ,

where α denotes the true value of the parameter.
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Recapitulation of the previous lecture

Quality criteria for point estimators

Consistency
n: Number of measurements used for the point estimation.
α̂n : Corresponding estimate.
α0: True value of α.
Eα is called a consistent point estimator if α̂n converges stochastically to
α0. This means that the probability of estimating a value different from
α0 goes to 0 as n → ∞.

Unbiasedness
The bias of an estimate α̂ is defined as

bn(α̂) := E (α̂n − α0) = E (α̂n)− α0.

The point estimator is unbiased if

bn(α̂) = 0, or E (α̂n) = α0

for all n.
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Recapitulation of the previous lecture

Illustration of Consistency and Unbiasedness
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Recapitulation of the previous lecture

Further quality criteria for point estimators

Efficiency
Let Vmin be the minimum possible variance among all point estimators of
a real-valued parameter. The efficiency of a particular point estimator is
given by the ratio Vmin

Var(α̂) , where Var(α̂) is the variance of α̂ for that point
estimator.

Sufficiency
Any function of data x is called a statistic. A sufficient statistic for α is a
function of the data that contains all the information about α.
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Point estimators used in high energy physics



Recapitulation of the previous lecture

Maximum likelihood method

p(x ;α): Probability of obtaining the measured values x given a parameter
α.

Substituting the measured values x into the function p(x ;α) yields a
statistic of x , which is called the likelihood or the likelihood function
L(x ;α).

The term likelihood is used to indicate the relationship with the
probability density p(x ;α) while making it clear that L is not a
probability function.

Let f (xk ;α) be the probability density for the outcome of a single
measurement xk . With n independent measurements x = (x1, . . . , xn), we
have

L(x1, . . . , xn ;α) =

n∏
k=1

f (xk ;α).

In the method of maximum likelihood, the estimate for α is taken as the
value of α that maximizes L(x ;α).
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Recapitulation of the previous lecture

Asymptotic behavior of maximum likelihood

n → ∞
The point estimator is consistent.
The point estimator is efficient.
α̂ is normally distributed.
Due to consistency, the point estimator is asymptotically unbiased.

Finite n
To determine the behavior of the point estimator with limited data size
n, experimental practice uses ensembles of randomly generated simulated
data to which the point estimator is applied.
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Recapitulation of the previous lecture

Method of least squares
n measurements x1, . . . , xn .

E (xk ;α): Expectation value of xk given α (ttheoretical predictionffor the
value of xk).

V = (cov(xk , xℓ)): Covariance matrix. In general, V is also a function of α.

Q2 :=

n∑
k ,ℓ=1

[xk − E (xk ;α)]V
−1
kℓ (α) [xℓ − E (xℓ;α)] .

In the method of least squares, the estimate for α is chosen as the value
for which Q2 is minimized.

Remark. If Vkℓ(α) is unbounded, we may obtain nonsensical results for α.
For example, if Vkℓ(α) → ∞ as α → αnon-sense and xk − E (xk ;α) remains
bounded, the minimization yields αnon-sense. In practice, Q2 is often
minimized iteratively. One starts with an estimate for V and varies V
during the minimization of Q2. Then, V is recalculated for the obtained
estimate of α, and the minimization is repeated with V fixed until α̂ no
longer changes significantly.
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Interval estimation

Goal: Determination of an interval which contains the true value of a
parameter with a given probability.

Limit case of the normal distribution
Let us assume the variable x ∈ |R is normally distributed, i.e.

p(x ) = N (x ;µ, σ) =
1√
2πσ

e−
1
2

(x−µ)2

σ2 .

If µ and σ are known, then

p(a < x < b) =

b∫
a

N (x ;µ, σ)dx =: β.

If µ is unknown, one can calculate p(µ+ c < x < µ+ d):

β =p(µ+ c < x < µ+ d) =

µ+d∫
µ+c

1√
2πσ

e−
1
2

(x−µ)2

σ2 dx=

d∫
c

1√
2πσ

e−
1
2

y2

σ2 dy

= p(c − x < −µ < d − x ) = p(x − d < µ < x − c).
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Interval estimation with the normal distribution

β =p(µ+ c < x < µ+ d) =

µ+d∫
µ+c

1√
2πσ

e−
1
2

(x−µ)2

σ2 dx=

d∫
c

1√
2πσ

e−
1
2

y2

σ2 dy

= p(c − x < −µ < d − x ) = p(x − d < µ < x − c).

That is, if x has been measured, the probability that the desired value of µ
lies between x − d and x − c is equal to β.

If x is a parameter α̂ from a point estimation conducted using the
method of maximum likelihood or the method of least squares, then α̂
is asymptotically normally distributed, and the above formulas can be
applied for interval estimation.

The intervals [a, b] or [x − d , x − c] are called confidence intervals. β is
the confidence level corresponding to the confidence level.
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Generalization to the multidimensional case

Q(x ;µ,Σ) := (x − µ)tΣ−1(x − µ), x , µ ∈ |R.

p(Q) =
1

(2π)d/2
· 1√

det(Σ)
exp

(
−1

2
Q(x ;µ,Σ)

)
.

In multiple dimensions, the confidence interval becomes a confidence
region corresponding to the confidence level β:

p(Q(x ;µ,Σ) < K 2
β ) = β.
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Likelihood-based confidence intervals

−2 lnN (x = µ± σ;µ, σ)− [−2 lnN (x = µ;µ, σ] = 1.

3− 2− 1− 0 1 2 3
σ)/µ(x-

0

1

2

3

4

5

6

7

8

9

-2
ln

N
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Likelihood-Based Confidence Intervals

Generalization

0.5− 0 0.5 1 1.5 2 2.5

x

0

1
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3

4

5-2
ln

L

x= α̂

α
−

α
+

Confidence Interval: [α−, α+].
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Hypothesis testing

Goal, to determine which hypothesis (for a probability distribution)
describes the recorded data point distributions (data).

Nomenclature. H0: null hypothesis.
H1: alternative hypothesis.

Simple and Composite Hypotheses
When the hypotheses H0 and H1 are given
completely without free parameters, the hypotheses are called simple
hypotheses.
If a hypothesis contains at least one free parameter, it is referred to
as a composite hypothesis.

Procedure
For hypothesis testing, W must be chosen such that

p(data ∈ W |H0) = α

with a small value of α and simultaneously

p(data ∈ D\W |H1) = β

with the smallest possible β.
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Introductory example of hypothesis testing
A theoretical model predicts the existence of a particle with mass M , the
production cross-section, and the partial width for decay into a photon
pair. To confirm or refute this model, one must examine the distribution
of mγγ.

dn

dm γγ

mγγmm1 2

Distribution if the model

is correct

the model is wrong

Distribution if

In the interval [m1,m2], one is
sensitive to the model’s prediction.
There are two hypotheses, namely
that the theory is correct or
incorrect.

H0: Null hypothesis: TTheory is
incorrect.“

H1: Alternative hypothesis: TTheory
is correct.“

With a sufficiently large amount of data, the probability that the measured
mγγ distribution looks like H0 is small if the theory is correct. At the same
time, the probability that the measured mass distribution looks like H1 is
large.
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Introductory example of hypothesis testing
dn

dm γγ

mγγmm1 2

Distribution if the model

is correct

the model is wrong

Distribution if

n: Number of events measured in the interval [m1,m2].
One must now choose a threshold value N such that

p(n > N |H0) = α

with a small value of α and

p(n ≤ N |H1) = β

is as small as possible if the theory, i.e., H1, is correct.
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Introductory example – experimental practice

n: Number of events measured in the interval [m1,m2].
One must now choose a threshold value N such that

p(n > N |H0) = α

with a small value of α and

p(n ≤ N |H1) = β

is as small as possible if the theory, i.e., H1, is correct.

Experimental Practice

α = 5.7 · 10−7, which corresponds to 5σ of a normal distribution, to
claim the discovery of a particle.
With a value of α = 0.3%, which corresponds to 3σ of a normal
distribution, one says there is evidence for the existence of a new
particle.
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Type I and type II errors

The confidence level α is defined as the probability that x ∈ W if the null
hypothesis H0 is correct:

p(x ∈ W |H0) = α.

The probability β represents the likelihood of incorrectly rejecting the
alternative hypothesis H1:

p(x ∈ D\W |H1) = β.

H0 correct H1 correct
Approach
x /∈ W ⇒ H0 is Good acceptance, since Contamination
considered correct p(x ∈ D\W |H0) = 1− α Type II error

is large p(x ∈ D\W |H1) = β.
x ∈ W ⇒ H0 is Wrong decision Rejecting H0

rejected, H1 is Type I error good, since
considered correct p(x ∈ W |H0) = α p(x ∈ W |H1) = 1− β

is small is large.
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