In-Pixel homogeneity and position reconstruction studies

Lars Reuen, University of Bonn

Overview

- 1. Reminder:
 - Test Beam 2008 setup & operation, Data analysis
- 2. In-pixel homogeneity studies
- 3. Position reconstruction studies:
 - Energy dependence of ETA
 - Charge cloud approximation fit
 - Multivariate methods
- 4. Summary

1 - Reminder: TB 2008 setup

CERN SPS, 120 GeV pions

ILC prototype system: 64 x 128 PXD5

6 sensor layers, Old power supply setup

No dedicated power supply system
➔ To some modules suboptimal bias voltages applied

universität**bonn**

1 - Reminder: data analysis

- **Pedestal & Common Mode correction**
- Hit finding, Clustering & Masking •
- **Position reconstruction (ETA)** •
- **Alignment & Tracking** •
- Advanced correction (specific to TB 2008) •

seed row (Y)

seed row (Y)

2 - In-pixel homogeneity studies

2 - In-pixel homogeneity studies

Energy dependence of resolution (δ-e⁻)

Are there better alternatives to η

• Energy dependence of resolution (δ -e⁻)

Are there better alternatives to η

Are there better alternatives to η

Multiple η for

• Energy dependence of resolution (δ -e⁻)

Are there better alternatives to η

¹¹

- Energy dependence of resolution (δ-e⁻)
- Are there better alternatives to η

charge cloud shape

universität**bonn**

Multivariate analysis

Selection of Input Variables

Multivariate analysis

		GEANT simulation CoCG-Large: TMVA residuals in µm								
			all events			δe- only				
			MLP	BDTg	PDERS	LD	MLP	BDTg	PDERS	LD
x	Signals	0	1.3	1.3	1.4	3.3	3.6	3.7	5.0	6.6
		1	0.6	0.7	0.6	3.3	2.9	3.2	4.2	6.6
		2	1.1	1.1	1.0	3.0	3.0	3.3	4.9	6.2
		3	0.8	0.8	0.9	3.0	3.2	3.1	5.1	6.2
		4	0.7	0.7	0.9	3.0	2.7	3.2	5.1	6.2
	Moments	5	1.0	1.3	1.3	2.5	6.7	5.7	10.5	7.5
		6	0.8	0.7	0.9	2.5	5.6	5.5	6.3	7.5
		7	0.9	0.8	0.9	2.5	3.4	4.3	4.4	6.3
		8	1.2	1.2	1.4	2.9	5.8	6.4	6.6	22.5
		9	1.5	1.4	1.5	3.2	6.7	6.6	7.0	17.5
		10	0.9	1.0	0.9	2.6	4.6	4.0	5.1	6.2
Y	Signals	0	1.1	1.0	1.2	1.8	2.6	2.5	2.7	4.2
		1	0.4	0.5	0.3	1.8	2.1	2.4	2.8	4.2
		2	0.9	0.9	0.9	1.6	2.3	2.3	3.4	3.9
		3	0.4	0.5	0.5	1.6	2.0	2.4	4.1	4.0
		4	0.4	0.5	0.5	1.6	2.1	2.3	4.2	3.9
	Moments	5	0.6	0.9	0.6	1.2	5.0	4.8	8.8	5.1
		6	0.5	0.5	0.5	1.2	4.0	4.4	4.4	5.0
		7	0.6	0.5	0.8	1.2	4.2	5.3	4.4	4.6
		8	0.6	0.6	0.7	1.3	3.6	3.9	4.3	4.1
		9	1.0	1.0	1.0	2.6	3.8	4.4	5.5	6.5
		10	0.6	0.7	0.7	1.3	2.7	5.7	3.0	4.0

Moments of sig. distr. not better

- 1. MLP & BDT
- 2. PDERS
- 3. LD

Eta method is always equal or better

New approaches might be useful with smaller pixels or thicker sensors

Summary

- Test Beam 2008 data used for In-pixel homogeneity study
- Sensors showed (near) perfect homogeneity
- Exception: Sensor with wrong biasing
- Study of position reconstruction algorithms
- Alternatives to eta /resolution deteriorating due to δ-e⁻
 - 1. Multiple η
 - 2. Charge cloud shape
 - 3. Multivariate analysis (PDE, MLP-ANN, BDT, LD)
- δ-e⁻ best tackled by multiple η
- Information confined to seed and highest neighbor

