

Belle II: PS Module firmware Intended design and work plan

Bonn, Feb. 08, 2011

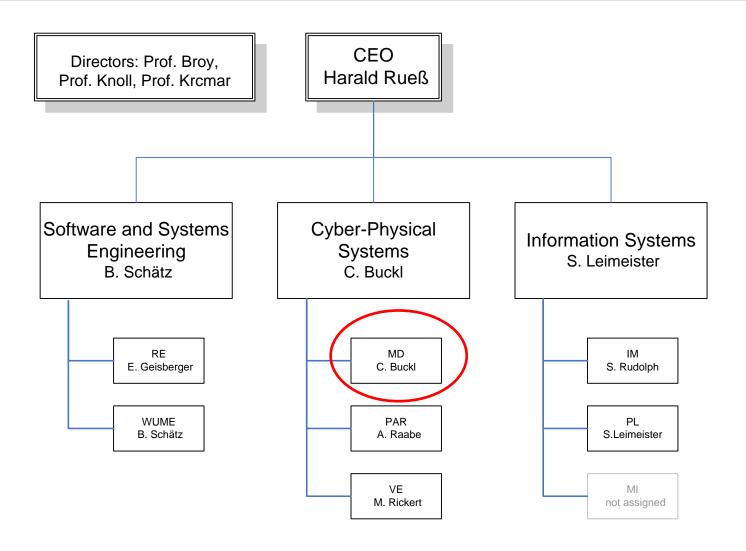
Agenda

Introduction

- Contribution of Fortiss to Belle II project
- Planned schedule
- □ Safety engineering

□ Conclusion

fortiss – Innovation in Software and Systems



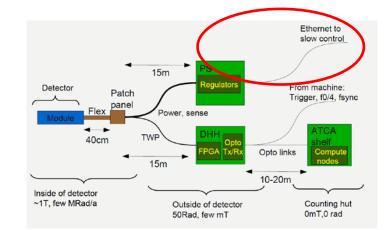
- Spin-Off of TU München
- Non-profit research organization
- Proprietors
 - Technische Universität München
 - LfA, Förderbank Bayern
 - Fraunhofer Gesellschaft
- Funded by Bayerisches Staatsministerium fuer Wirtschaft, Infrastruktur, Verkehr und Technologie (January 2009)
- Goal
 - Close the gap between industry and academia
 - Transfer of know-how to industry
 - Transfer of research questions to academia
 - Incubator for start ups

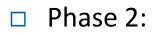

fortiss – Organization

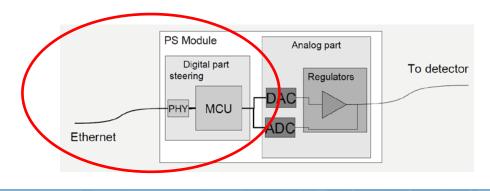
Bonn, Feb. 08, 2011 © Simon Barner, fortiss 2011

CPS group: Application Area and Focus

Bonn, Feb. 08, 2011 © Simon Barner, fortiss 2011


Dept. of Informatics, TU München VI – Robotics and Embedded Systems


- Informatik VI Robotics and Embedded Systems :
 - » A. Knoll Professor
 - » D. Burschka Associate Professor "Service Robotics", with DLR
 - » G. Hirzinger Honorary Professor
 - » G. Schrott Academic Director
- Main research directions
 - » Sensor based service and medical robotics
 - » Cognitive robotics & man-machine-dialogue-systems
 - » Embedded real time systems
- Teaching
 - » Undergraduate: Informatik I & II (Introduction to computer science)
 - » Graduate: robotics, sensor systems, real-time systems, digital signal processing, machine learning I & II, autonomous systems


Contribution of Fortiss to Belle II project

- □ Sub-contractor of LMU, Excellence Cluster Universe
 - Phase 1: Design and implementation of software for power supply modules
 - Phase 2: Support
- □ Phase 1: Work packages
 - WP1: Development of safety concept
 - WP2: Consulting services to LMU w.r.t. hardware platform
 - WP3: Firmware development
 - WP4: Integration to slow-control

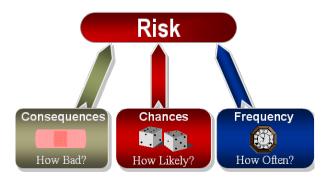
- Bug fixes
- Minor adaptations

Planned schedule

	2011											2012
	02	03	04	05	06	07	08	09	10	11	12	
WP1 Safety												
WP2 HW platform												
WP3 Firmware												
WP4 SC integration												
Support												

Next steps

- Consulting services
 - » Selection of hardware platform (Feb. 2011)
 - » Definition of fault hypothesis (Feb. 2011)
- Specification of firmware and interface to slow control (Mar. 2011)


Safety Engineering

- 1. Identification of safety requirements:
 - Typically not: "the system must output always a correct value", but "erroneous outputs must be corrected within 1 ms"
- 2. Identification of faults:
 - What can go wrong in the system \rightarrow fault hypothesis
- 3. Which hazards can lead to a violation of safety requirements:
 - Analysis using Fault-Tree Analysis (FTA) and/or Failure Mode and Effect Analysis (FMEA)
- 4. Selection of appropriate system design including fault-tolerance mechanisms
 - Identification of minimal cut sets leading to violation of safety requirements (top-level undesired event)
 - Check whether minimal cut sets are within fault hypothesis
 - Yes: introduction of fault-tolerance mechanisms
 - No: design is okay

Safety Engineering – Important terms

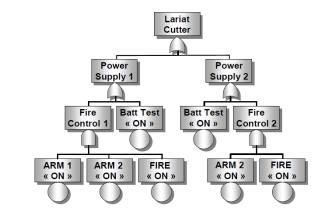
- "An error is a manifestation of a fault in a system, which could lead to system failure." [Singhal/Shivaratri]
 - Fault undesired state which can lead to an error
 - Error system state which is not part of the specification
 - Failure System can no longer provide its service(s)
- Risk management
 - Hazard: Situation, that poses a level of thread to life, health, property, or environment
 - Risk = Likelihood of occurrence x seriousness if incident occurred
- Three key techniques
 - Hazard and Operability Study (HAZOP)
 - Fault Tree Analysis (FTA)
 - Failure Modes and Effects Analysis (FMEA)

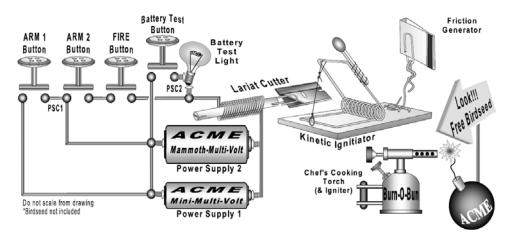
Fault-tree analysis (FTA)

□ FTA

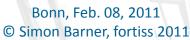
- Deductive, top-down method
- Analyze effects of initiating faults and events on a complex system
- "User perspective"

Origin


- 1962: Developed in by U.S. Airforce (H.A. Watson)
- Later adopted by other domains (civil aircraft, nuclear power industry, NASA, military)


□ Standards

- NUREG-0492: NRC Fault Tree Handbook
- SAE ARP4761
- MIL–HDBK–338
- IEC / EN 61025


□ Approach

- 1. Define the undesired event to study
- 2. Obtain an understanding of the system
- 3. Construct the fault tree
- 4. Evaluate the fault tree
- 5. Control the hazards identified

[A. Long 2003]

Failure Mode and Effects Analysis (FMEA)

FMEA

• Supplement FTA: "Bottom-up" use of FMEA to identify many more causes and failure modes resulting in top-level undesired events.

Effects

custome

floo

s

(severity

rating)

Cause(s)

level sensor

level sensor

disconnected

failed

ο

(occurrence

rating)

D

(detection

rating)

Current

controls

Fill timeout

based on

low level

sensor

time to fill to

RPN (risk

priority

number

Recommended

actions

Perform cost analysis of

halfway between low

and high level sensors

adding additional sensor Jane Doe

CRIT (critical

characteristic

Restriction: Not able to discover complex failure modes involving multiple failures within a subsystem.

Function

Fill tub

Failure

mode

"Platform perspective"

Origin

- 1940ies: by US Armed forces
- 1960ies: Apollo program
- 1970ies: Introduced to automotive industry
- Preparation
 - Analyze robustness of system integration
 - Describe system and its function
 - Create block diagram of system → logical relation of system components
 - Create worksheet collecting important information of system → List system functions (based on block diagram)

Approach

- Severity
 - » Determine failure modes based on functional requirements and their effects
 - » Failure modes can propagate
 - » Failure effect: Result of failure mode as perceived by user
 - » Assign severity number (SN, 1 = no danger, 10 = critical)
- Occurrence:
 - » Look at cause of failure mode and rate its frequency (occurrence ranking: 1-10)
 - » Failure cause is considered as design weakness
 - » High occurrence (> 4 for non-safety failure modes, >1, if SN >= 9): Determine action
- Detection: Test efficiency of actions

Responsibility

and target

completion date

Source: Wikipedia

10-Oct-2010

Action

taken

Conclusion

- Design and implementation of
 - PS module firmware
 - Interface to slow-control
- □ Safety engineering for PS system
 - All relevant parts of the system must be considered (HW, SW)
 - FTA
 - FMEA
- Next steps
 - Requirements analysis
 - Consulting services for selection of hardware platform
 - System specification

Contact

Dipl.-Inf. Simon Barner barner@fortiss.org

Dr. Christian Buckl buckl@fortiss.org

Prof. Alois Knoll knoll@in.tum.de

fortiss GmbH Guerickestr. 25 80805 München

