QED Background: Comparison of Data and Monte Carlo

Elena Nedelkovska, Christian Kiesling, Susanne Koblitz

<u>Max – Planck Institute for physics, Munich</u>

- > Expected Background at Belle II
- QED expectations based on different MC generators
- Performed QED experiments at KEK
- Comparison between data and MC
- Summary and Conclusion

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DEPFET

tive Pixel Dete

Belle 11

6th International Workshop on DEPFET Detectors and Applications 7 – 9 February, 2011, Bonn, Germany

2 photon (QED) processes

to predict the situation for Belle II we need MC
 we have a set of three "standard" MCs

- Berends Daverfeldt Kleiss (BDK)
- ➢ S.Jadach et al. (KW)
- J.Fujimoto et al. (Grace)

The answers from these three MCs are consistent amongst themselves

BUT: there is also a prediction from SUPERB which deviates strongly

consistent MCs is ~ 800

What do we expect?

DEPFET

tive Pixel Det

SuperKEKB Simulation: ~ 800 tracks per PXD frame (~ 13 000 tracks, SuperB Simulation)

QED Background Runs

Real data to solve the MC puzzle

➤ A few MeV cannot be triggered at Belle

Random Triggers (unbiased background)

L(/nbs)

- ➤ vary luminosity
- look at change in # hits in SVD
 extrapolate to L = 0 to estimate non - QED machine background

Background events generated by 3 sources:

DEPFET

ve Pixel Det

6

- ✤ B physics (few)
- Machine background

depends only on luminosity and not on the particular beam setting

QED

Performed QED experiments

Random Trigger Runs and Data Sample :

Exp. A (separate the beams vertically) Run (415 - 420) each run 500 k triggers Exp. B (increase vertical beam size in HER) Run (401 - 411) each run 500 k trigger Exp. C (change beam currents by stopping injection) Run (421 - 427) each run 10 min

Random trigger rate: 400Hz Bhabha trigger rate: 50Hz moderate start luminosity (~10/nbs)

Each experiment started with a run ~ 10 /nbs (" default ") 500 k triggers at 400Hz = 30 min (including beam setup) vary luminosity steps of 2 /nbs 10, 8, 6, 4 /nbs

Luminosity Change

SVD hit multiplicity in the 1st SVD layer

$$R = \langle N_{hits} \rangle = 113$$

Hit Rate decreases

$$R = \langle N_{hits} \rangle = 103$$

Observed Increase In Number Of Hits For All Measurements

DEPFET

Ctive Pixel Dete

> All Layers and All Experiments included

Origin Of The Big Peak

 $2^{nd}\,$ - $\,4^{th}\,$ SVD layer - all experiments included

DEPFET Presive Aixel Detector

12

Origin Of The Small Peak

DEPFET

 $1^{\rm st} \, {\rm SVD}$ layer - all experiments included

Use Full Detector Simulation

DEPFET

Ctive Pixel Dete

≻to determine how many hits a track produces in each SVD layer

 \Box SVD hit multiplicity – z strips (similar for φ strips)

Simulation shows discrepancy from naive expectation

Summary Of The Performed Measurements

In layer 1 measured : $<\Delta hits>=13.3\pm2.6$ In layer 2-4 measured : $<\Delta hits>=-2.9\pm2.1$

Observation can be explained when looking at the full detector simulation:

- predicts in layer 1 < #hits > = 11.31 per QED event
- predicts in layer 2-4 < #hits > = 2.38 per QED event

Conclusion: the observation for layer 1 and layer 2 – 4 are consistent and in agreement with the full MC Simulation

Comparison Between Data And Monte Carlo

Naive Expectation <u>Assume</u> :		MC generator		SuperB (BDK)		BDK		KoralW		
1 track makes 1 cluster		Tracks		13800		~ 710		~ 800		
		Occupancy		1.3%		0.07%		0.1%		
		Hits		24		1.1		1.5		
MC vs. Data	SuperB (BDK)		KoralW		Data					
					average		delta			
Hits (1 st SVD layer)	181		11.31		~ 100		13.3			
Hits (2 nd – 4 th SVD layer)	38.1		2.38		~ 45		~ 0	m	1 QED trac <mark>k</mark> akes more tha 1 "curlers"	an
Occupancy (1 st SVD layer)	5.5%		0.3%		0.4%					
			9	Still	far aw limit c	ay fro of 2 %	om the		16	

The expectation form SuperB is completely excluded

Summary and Conclusion

□ Strong discrepancies in MC predictions for QED Background between Belle II and SuperB

□ Use measurements with different beam tunings to extract QED background hits in SVD2

□ Measurements show additional luminosity – depended background which is also seen in CDC

 $\hfill \Delta hits for layer 1 of SVD2 very different from naive expectation (outer layers in agreement)$

□ Full MC simulation explains this observation and gives consistent picture of measurements

 \Box expected occupancy for layer 1 rises to 0.3 %

□ Comparison of measured ∆hits with predictions of different MC generators again allows complete exclusion of SuperB prediction

CDC Hits Corrected SVD Hits

 $> 2^{nd} - 4^{th}$ SVD layer – Experiment A

19

 $> 2^{nd} - 4^{th}$ SVD layer – Experiment B

20

Active Pixel Detector

CDC Hits Corrected SVD Hits

 $> 2^{nd} - 4^{th}$ SVD layer – Experiment C

21