2D n-correction

| --"—-'--

by a Neural Network

6th International Workshop on DEPFET
Detectors and Applications

Bonn, 7 - 9 February 2011

Lukas Malina, Peter Kodys, Peter Kvasnicka

Charles University in Prague
Institut of Particle and Nuclear Physics

WAflaws -~ Al ur

P 1 Al
VYily a 1Y Cu |

- Pay
cili ING

* n-correction in 2D is not

straightforward
« 21D n —correction perform well, but there are 2D
features they don’t see

« A simple NN can be a handy representation off a
2D n—correction function

e Procedure:

 Train the network using CoG from hit
reconstruction on input and track intersections
on output.

 Use the network to predict corrected hit
positions based on CoG positions.

P-X 19
Vi L

PeYo
1nvu

-«
>~

« ROOT Class TMultiLayerPerceptron

 Learning Methods:
 BFGS, Stochastic

 Used types of neurons:
* input - inactive
* hidden - sigmoidal or Gauss
 output - linear
 Learning data: from Beam test 2009
 Input: CoG position modulo double pitch
 Output: (track intersection - CoG)
 Different sizes of networks were
tested

0.2

0.15

0.1

[T TTTTTTTI
| |

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

*The networks don’t work: We tested various network topologies
and neuron types with the same results.

*Residuals in dependence on position in double pixel show that
the MPV is different from mean because of tailed distributions.

| xout {(xin>0.62)8&&(xin<0.65)} xout:xin

200
180
160
140
120
100

80

60
40

20

*The error distribution is assymetric and the ¢ Residual profiles for different energies

tails offset network predictions. are in the row from the lowest one
*Hypotesis: this could be due to energy (black, dark blue, light blue, green and
dependence. We use four equidistant red for the highest energy)

quantiles to split data by energy

*Spliting by energy improves residuals: for the same network geometry:
ewe get 1.9 um in x-axis instead of 2.4 um
ewe get 1.7 um in y-axis instead of 2.0 um

Outlook and Con ons

L | AIII
<alnl 184

-«
| % D~

o0

Results from NN can only be made as good as
non-parametric estimates of the n-correction
function when split by energy.

This is for practical reasons: we used the
standard (that is non-robust) error function in
training, while medians were used in analysis.

This is the simpler part, our ultimate goal is to
use NN for clustering and hit reconstruction from

digits.

Thank you for your attention

