2D η-correction by a Neural Network

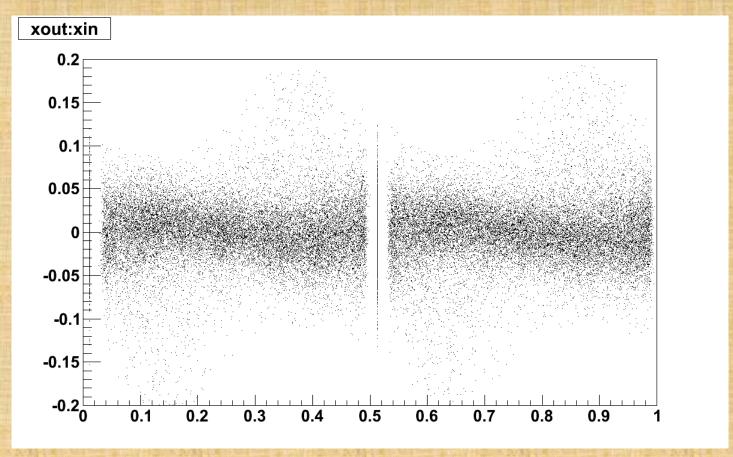
6th International Workshop on DEPFET
Detectors and Applications
Bonn, 7 – 9 February 2011

Lukáš Malina, Peter Kodyš, Peter Kvasnička

Charles University in Prague
Institut of Particle and Nuclear Physics

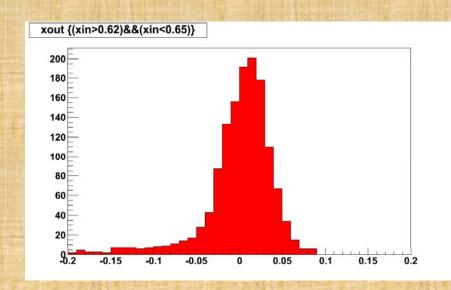
Why a Neural Network?

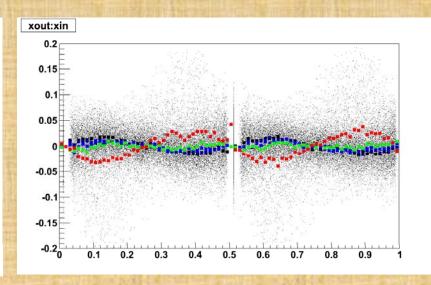
- η-correction in 2D is not straightforward
 - 2 1D η –correction perform well, but there are 2D features they don't see
 - A simple NN can be a handy representation off a
 2D η-correction function


Procedure:

- Train the network using CoG from hit reconstruction on input and track intersections on output.
- Use the network to predict corrected hit positions based on CoG positions.

Methods


- ROOT Class TMultiLayerPerceptron
- Learning Methods:
 - BFGS, Stochastic
- Used types of neurons:
 - input inactive
 - hidden sigmoidal or Gauss
 - output linear
- Learning data: from Beam test 2009
 - Input: CoG position modulo double pitch
 - Output: (track intersection CoG)
- Different sizes of networks were tested


Results

- •The networks don't work: We tested various network topologies and neuron types with the same results.
- •Residuals in dependence on position in double pixel show that the MPV is different from mean because of tailed distributions.

Results

- •The error distribution is assymetric and the tails offset network predictions.
- •Hypotesis: this could be due to energy dependence. We use four equidistant quantiles to split data by energy
- Residual profiles for different energies are in the row from the lowest one (black, dark blue, light blue, green and red for the highest energy)
- •Spliting by energy improves residuals: for the same network geometry:
 - •we get 1.9 μm in x-axis instead of 2.4 μm
 - •we get 1.7 μm in y-axis instead of 2.0 μm

Outlook and Conclusions

- Results from NN can only be made as good as non-parametric estimates of the η-correction function when split by energy.
- This is for practical reasons: we used the standard (that is non-robust) error function in training, while medians were used in analysis.
- This is the simpler part, our ultimate goal is to use NN for clustering and hit reconstruction from digits.

Thank you for your attention