PXD Performance at High QED Occupancies

Z. Drásal^{*}, P. Kvasnička^{*}, K. Prothmann⁺

Charles University Prague ^{}MPI Munich

Outline

- Simulation settings:
 - Mokka geometry & generator settings
 - Marlin: merging signal & background, digitization, silicon tracking
- Performance studies:
 - PXD with/without ADC in-plane resolution studies
 - PXD in large QED background (~% PXD occupancy) impact parameter studies

Mokka – Geant 4 Geometry & Settings

• Mokka geometry model: *VTXBelleII_SVDBarrel_PXD075um1600_Model_NB*

- **PXD:** 2 layers of Depfets @ 14, 22 mm (1st layer flipped)
 - active part: layers \rightarrow ladders \rightarrow Si sensors (75 μ m)
 - passive parts: Si rims $(450 \ \mu m)$ + gap inbetween sensors , i.e. passive Si $(550 \ \mu m)$ + Si support bridge $(750 \ \mu m)$ + 12 switchers $(350 \ \mu m)$
- SVD: 4 layers of DSSDs @ 38, 65, 115, 140 mm
 - active part: layers → ladders → Si sensors (Hamamatsu, i.e. 320 µm sensors) x passive part: Si rims

	R [mm]	# ladders	# sensors
SVD layer 1	38.00	8	2
SVD layer 2	65.00	8	3
SVD layer 3	115.00	14	5
SVD layer 4	140.00	17	6

• Mokka particle gun: 0.2, 0.5, 1, 2, 3, 4 GeV pions, distr. randomly in $\varphi \& \vartheta$

7th FebNov 2011

Marlin & MergeBackground processor

• Marlin processor: MergeBackground

- merges together:
 - collection of signal hits (physics events)
 - collection of background hits (QED background) → overlay several *.slcio files in order to get required (expected) occupancy

ILC Software Scheme

4

Marlin & SiTracking processor

- Marlin processors: SiPxlDigi & SiStripDigi
 - digitization & clustering (hits within integration time worked out only)
 - **PXD**: 20µs x **SVD**: 20ns (no pile-up), limit 160ns
- Marlin processors: *SiTracking*
 - FindHitSectors find triplet combinations (SVD only) & test them based on helix hypothesis
 - BuildTrackSegments use closest approach to find remaining hits & refit using helix
 - MakeTrack merge split tracks, refit with Kalman f.
 - Extrapolate to PXD, assign hits & refit with Kalman
- Comments: SVD time window of 20ns achievable only when no signal pile up appears and fitting procedure using 3 samples around peak works, otherwise 50ns window or even higher appears → here, based on discussion with SVD people, limit of 160ns simulated

 $\label{eq:Figure 5.30: Occupancy reduction potential with the APV25 and hit time finding.$

7th FebNov 2011

PXD Performance @ Large Occupancies

- Single pion tracks @ 0.2, 0.5, 1.0, 2.0, 3.0, 4.0 GeV simulated randomly in the acceptance region of Si tracker (PXD + SVD with barrel-like forw. region)
- Signal (pions) & background hits (Belle II QED background KoralW simulator)
 @ following occupancies merged:
 - 0 % (no background) PXD w/wo ADC
 - 0.9% @ 1st PXD layer, 0.8% @ 2rd PXD layer, (0.13% correspond to electronics noise)
 - 1.6% @ 1st PXD layer, 1.4% @ 2rd PXD layer, (-"-)
 - 2.3% @ 1st PXD layer, 2.1% @ 2nd PXD layer,(-"-)
- Impact parameter resolution studies for PXD with integr. time of 20µs & SVD with integr. time of 160 ns performed (SVD with 20ns no significant impact visible)
- Analysis based on quantiles method used: $RMS = |(q_{0.84} q_{0.14})|/2$ (68% area), where const. comb. background subtracted first (average value outside of signal window $|\sigma| > 0.8$ mm subtracted), quant. errors estimated using Maritz-Jarrett method \rightarrow very robust & stable approach (fitting method estimating RMS90 showed to be unstable ...)

6

Results: PXD In-Plane Resolution in R-Phi & Z @ Large Occupancies

7th FebNov 2011

6th International Workshop on DEPFET Detectors

Results: D0 Impact Parameter Studies

• Tracking in PXD + SVD – fit with: $\sigma = a \oplus b/p^{\sim}$ ($p^{\sim} = pseudomomentum$)

Results: Z0 Impact Parameter Studies

• Tracking in PXD + SVD X SVD only – fit with: $\sigma = a \oplus b/p^{\sim}$ ($p^{\sim} = p$ seudomom.) WorkZ0 2 WorkZ0 2 Entries 1470 Z0 Resolution Mean -0.001123 600 0.2 500 Z0 – no bg, p~=0.5 GeV Z0 resolution: PXD At=20 us, SVD At=160 ns 0.18 no background 400 example a [µm] = 9.8±0.6, b [µm] = 21.6±1.3 0.16 300 no background, only SVD 200 a [um] = 12.6±1.2, b [um] = 49.0±2.9 0.14 occupancy @ 1st layer 0.9% 100 0.12' قق ′ a $[\mu m] = 8.6 \pm 0.8$, b $[\mu m] = 28.2 \pm 1.9$ occupancy @ 1st layer 1.6% -0.3 -0.2 0.2 -0 1 0.1 03 0.4 a [um] = 7.4±0.9, b [um] = 33.4±2.1 WorkZ0 2 WorkZ0_2 occupancy @ 1st layer 2.3% 1374 ntries Mean -0.002299 0.08 a [μ m] = 7.2±0.9, b [μ m] = 36.8±2.2 400 350 Z0 – 2.3%, p~=0.5 GeV 0.06 example 250 0.04 200 0.02 150 100 0 50 0.52.5 3.5 з p β sin(θ)^{5/2} [GeV]

7th FebNov 2011

6th International Workshop on DEPFET Detectors

9

Results: Impact Parameter Ratios

• Ratio of Z0 imp. parameters for different levels of QED background→curve obtained as a ratio of the curves from the Z0 fits → resolution degrades by tenths of percent!

- Results for relatively low pseudo-momenta seem to be
- biased → could be explained by unreliable Si tracking in low energy region
- Other results within the error in very good agreement with the fit
- Degradation is pseudomomenta dependent
- D0 fit reliable only in simulated energy window (const. term is dependent on bg. level, which shouldn't) → only Z0 param. shown ...

Conclusions

- PXD performance @ high QED occupancies studied:
 - In order to see the limits, the SVD time window set to 160 ns (pulse time over threshold), the real time window might be dependent on the background level (pulse piles-up effect), without the pile-up 20 ns time window achievable → PXD performance under those conditions shown at 7th B2GM: no significant degradation in resolution seen (SVD track picks up the correct PXD hit(s) when extrapolation performed)
 - Due to "SVD tracking only & extrapolation to PXD detector" algorithm, the PXD helps even for relatively high occupancies ~ 2.3% @ 1st layer (wrt SVD standalone tracking)
 - The degradation in Z0 impact parameter is pseudomomenta dependent (energy & 9 angle dependent) and appears to be at the level of tens percent, for 0.9% occupancy (a) 1st layer it stays below 25%