

X-ray and electron irradiations at Karlsruhe and ELSA (Bonn)

Status and plans

Andreas Ritter

- 1. Irradiation in Karlsruhe
 - 1. Clear Gate
 - 2. Sensitive area and cross sections
 - 3. Threshold voltage shift
 - 4. Influence of Gate voltage
- 2. Irradiation at ELSA (Bonn)
 - 1. Setup
 - 2. Irradiation procedure
 - 3. Dosimetry and results
- 3. Conclusion & Outlook

Characteristics of thin oxide structures: •Wafer divided into 4 quadrants •Each quadrant stands for one thickness of Si₃N₄. SiO₂ thickness is the same for all •Central device: **Capacitor or Gate Controlled Diode** •14 Transistor (=2x7), with diff. Gate length and width Different doping profiles available

Influence of Gate Voltage during irradiation

X-RAY IRRADIATION IN KARLSRUHE

2/9/2011

Goals and setup

Idea

10 nm Si₃N₄ has proven to be a promising candidate from previous irradiations campaign

Aim

- Investigate irradiation effects at Clear Gates, especially voltage dependent behavior
- Investigate interface generated leakage currents

Devices

- Doping of chosen transistors is similar to a DEPFET Clear Gate
- Dimensions are similar to PXD 6

Motivation - Possible Pixel Layout

Motivation (II)- Possible Pixel Layout

Mo

Motivation (III)- Possible Pixel Layout and Potentials

Motivation (IV)- Possible Pixel Layout and relevant cross

Clear Gate Results, -5 V during Irradiation

Clear Gate Results, -2.5 V during Irradiation

Clear Gate Results, 0 V during Irradiation

Clear Gate Results, +2.5 V during Irradiation

Clear Gate Results, +5 V during Irradiation

2/9/2011

Homogeneity of Beam

Beam /Tube parameters:

- •Distance: Exit window – DUT = 123 mm
- •Fe-filter
- •60 kV, 33 mA
- •Beam radius = 6.6 mm
- Lower dose rate, but more homogeneous beam

Change in threshold voltage shift due to certain Gate voltages

Ma/Dressendorfer

Change in threshold voltage shift due to certain Gate voltages

Thicker nitride could be a solution to the problem at hand.

Up to now, only irradiations on diff. nitride thicknesses (TO chips) were conducted with zero gate voltages during irradiation.

Radiation-Induced Trapped Charge in Metal-Nitride-Oxide-Semiconductor Structure; Takahashi et. al. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOX 46, NO 6, DECEMBER 1999

Damage of electrons in Gate oxide

ELECTRON IRRADIATION AT ELSA (BONN)

2/9/2011

ELSA Setup

Setup and procedure at ELSA:

- TROVIDUR foil for beam size measurements
- Diode for dose measurements
- Thin oxide structures for Gate oxide damages

Beam dump XY-stage TROVIDUR foil

LINAC1 beam line

Measurement procedure

TROVIDUR foil turns black after some seconds of beam time. Black area is elliptic, with a=1.0 cm and b=1.5 cm for the half axes

> Mounting of DUT to XY-stage. Biasing conditions during irradiation: **Diode:** V_{Reverse} = 35 V

TO chips: $V_{Bulk} = +10 V$, $V_{Gates(all)} = 0 V$

DUT positioning

DUT is hit by the beam. Ceramic is fluorescenting in electron beam. Picture from control room monitor. Confirmed that DUTs are centered in beam

Diode measurements - dosimetry

Goal: Use generation current in diode for dose measurements.

- Several PIN diodes in Beam
- Current measurements prove to be difficult, due to 50 Hz pulse repetition rate. Pulse duration time t_{pulse} ≈ 1 μs
- Needed oscilloscope for current measurements (50 Ω impedance)

 Still, problems remained; possible saturation problem in diode during pulse?

Homogeneity

As can be seen by TO chips, beam profile is not homogenous. Therefore dose estimation is difficult.

Two possibilities:

 Use beam and area parameters to estimate dose (assuming homogenous profile)
 Use results of samples irradiated in Karlsruhe to estimate dose

Dosimetry via Karlsruhe?

Threshold voltage shift vs. dose – dose estimation

Dose estimation of ELSA

Beam area of Ellipsoid on foil	4.71F+00	cm²
DUT AreaTransistor (w,L =		
20,6µт)	1.20E-06	cm²
Thickness SiO2	1.00E-05	ст
Charge in Beam/Pulse	8.00E-09	С
Pulsduration	1.00E-06	s
Pulsfrequency	5.00E+01	Hz
Particles per pulse	5.00E+10	
Partickes in beam per sec.	2.50E+12	
Beam current	4.00E-07	Α
Particles per pulse in	4 275.04	
transistor area	1.27E+04	
Dep. Energy per e- in SiO2	4.52E-05	MeV
Dep. Energy per pulse	2.26E+06	MeV
Den Energy in SiO2 per sec	1 13F+08	MeV
Mass SiQ2	2 105 11	
	5.19E-11	в Сч.
Dose per sec.	5.67E+02	Gу
	5.67E+01	krad
Dose per min.	3.40E+04	Gy
	3.40E+03	krad

Either electron damage is not so severe, or estimation is too rough

Clear Gates in Karlsruhe

- Influence of Gate voltage during Irradiation is severe, especially positive voltage. This happens in the cross section from Clear Gate to drift regions
 - More irradiation campaigns needed to see, whether more nitride can help
 - New design of selected areas?

Electrons at ELSA

- Dosimetry is a problem
 - Electron calibration/studies in Darmstadt(LINAC)?
 - Bulk damage measurement not done, Diode problems

Outlook

- Swing, g_m, interface currents yet to be analyzed
- More irradiations \rightarrow ELSA, Karlsruhe, Darmstadt?

Thanks for listening and special thanks to Karlsruhe, ELSA (operator, Julia & Sergey)

Trapping in insulator layer

 $+V_{G}$

- 1. Holes in oxide to Si-SiO₂ interface
- 2. Holes in Si_3N_4 and electrons from SiO_2 to N-O interface
- Recombination rate in Si₃N₄ higher than in SiO₂
 → more e⁻ trapped at N-O
- 4. Build-up of e⁻ reduces field in oxide \rightarrow saturation

-V_G Field always present

Thick Si₃N₄ \rightarrow Reduces field in ox \rightarrow saturation