Concepts of Experiments at Future Colliders II

PD Dr. Oliver Kortner

14.06. 2024

Recapitulation of the previous lecture

Interval estimation

Goal: Determination of an interval which contains the true value of a parameter with a given probability.
Limit case of the normal distribution
Let us assume the variable $x \in \mid \mathrm{R}$ is normally distributed, i.e.

$$
p(x)=N(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}} .
$$

If μ and σ are known, then

$$
p(a<x<b)=\int_{a}^{b} N(x ; \mu, \sigma) d x=: \beta
$$

If μ is unknown, one can calculate $p(\mu+c<x<\mu+d)$:

$$
\begin{aligned}
\beta=p(\mu+c<x<\mu+d) & =\int_{\mu+c}^{\mu+d} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}} d x=\int_{c}^{d} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}} d y \\
& =p(c-x<-\mu<d-x)=p(x-d<\mu<x-c)
\end{aligned}
$$

Recapitulation of the previous lecture

Interval estimation with the normal distribution

$$
\begin{aligned}
\beta=p(\mu+c<x<\mu+d) & =\int_{\mu+c}^{\mu+d} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}} d x=\int_{c}^{d} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}} d y \\
& =p(c-x<-\mu<d-x)=p(x-d<\mu<x-c)
\end{aligned}
$$

That is, if x has been measured, the probability that the desired value of μ lies between $x-d$ and $x-c$ is equal to β.

- If x is a parameter $\hat{\alpha}$ from a point estimation conducted using the method of maximum likelihood or the method of least squares, then $\hat{\alpha}$ is asymptotically normally distributed, and the above formulas can be applied for interval estimation.
- The intervals $[a, b]$ or $[x-d, x-c]$ are called confidence intervals. β is the confidence level corresponding to the confidence level.

Generalization to the multidimensional case

$$
\begin{array}{r}
Q(x ; \mu, \Sigma):=(x-\mu)^{t} \Sigma^{-1}(x-\mu), x, \mu \in \mid \mathrm{R} \\
p(Q)=\frac{1}{(2 \pi)^{d / 2}} \cdot \frac{1}{\sqrt{\operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2} Q(x ; \mu, \Sigma)\right)
\end{array}
$$

In multiple dimensions, the confidence interval becomes a confidence region corresponding to the confidence level β :

$$
p\left(Q(x ; \mu, \Sigma)<K_{\beta}^{2}\right)=\beta
$$

Likelihood-based confidence intervals
$-2 \ln N(x=\mu \pm \sigma ; \mu, \sigma)-[-2 \ln N(x=\mu ; \mu, \sigma]=1$.

Recapitulation of the previous lecture

Likelihood-based confidence intervals
Generalization

Recapitulation of the previous lecture

Hypothesis testing

Goal, to determine which hypothesis (for a probability distribution)
describes the recorded data point distributions (data).
Nomenclature. H_{0} : null hypothesis.
H_{1} : alternative hypothesis.

Simple and Composite Hypotheses

- When the hypotheses H_{0} and H_{1} are given completely without free parameters, the hypotheses are called simple hypotheses.
- If a hypothesis contains at least one free parameter, it is referred to as a composite hypothesis.

Procedure

For hypothesis testing, W must be chosen such that

$$
p\left(\text { data } \in W \mid H_{0}\right)=\alpha
$$

with a small value of α and simultaneously

$$
p\left(\text { data } \in D \backslash W \mid H_{1}\right)=\beta
$$

with the smallest possible β.

Discovery of the Higgs boson

(K< $<$ D $\triangle \rightarrow$ - $\rightarrow+$

Number of events in I

- 13.6 without a Higgs boson,
- Observed: 50.
\Rightarrow Excess of 36.4 Events
$>13,6+5 \cdot \sqrt{13,6}=32$.
- So the probability that the observed excess is caused by a statistical fluctuation of the "red distribution" is extremely small.

Recapitulation of the previous lecture

Introductory example of hypothesis testing
A theoretical model predicts the existence of a particle with mass M, the production cross-section, and the partial width for decay into a photon pair. To confirm or refute this model, one must examine the distribution of $m_{\gamma \gamma}$.

In the interval [m_{1}, m_{2}], one is sensitive to the model's prediction. There are two hypotheses, namely that the theory is correct or incorrect.
H_{0} : Null hypothesis: TTheory is incorrect."
H_{1} : Alternative hypothesis: TTheory is correct."
With a sufficiently large amount of data, the probability that the measured $m_{\gamma \gamma}$ distribution looks like H_{0} is small if the theory is correct. At the same time, the probability that the measured mass distribution looks like H_{1} is large.

Recapitulation of the previous lecture

Introductory example of hypothesis testing

n : Number of events measured in the interval [m_{1}, m_{2}]. One must now choose a threshold value N such that

$$
p\left(n>N \mid H_{0}\right)=\alpha
$$

with a small value of α and

$$
p\left(n \leq N \mid H_{1}\right)=\beta
$$

is as small as possible if the theory, i.e., H_{1}, is correct.

Introductory example - experimental practice
n : Number of events measured in the interval $\left[m_{1}, m_{2}\right]$.
One must now choose a threshold value N such that

$$
p\left(n>N \mid H_{0}\right)=\alpha
$$

with a small value of α and

$$
p\left(n \leq N \mid H_{1}\right)=\beta
$$

is as small as possible if the theory, i.e., H_{1}, is correct.

Experimental Practice

- $\alpha=5.7 \cdot 10^{-7}$, which corresponds to 5σ of a normal distribution, to claim the discovery of a particle.
- With a value of $\alpha=0.3 \%$, which corresponds to 3σ of a normal distribution, one says there is evidence for the existence of a new particle.

Recapitulation of the previous lecture

Type I and type II errors
The confidence level α is defined as the probability that $x \in W$ if the null hypothesis H_{0} is correct:

$$
p\left(x \in W \mid H_{0}\right)=\alpha
$$

The probability β represents the likelihood of incorrectly rejecting the alternative hypothesis H_{1} :

$$
p\left(x \in D \backslash W \mid H_{1}\right)=\beta
$$

Approach	H_{0} correct	H_{1} correct
$x \notin W \Rightarrow H_{0}$ is considered correct	Good acceptance, since $p\left(x \in D \backslash W \mid H_{0}\right)=1-\alpha$ is large	Contamination Type II error $p\left(x \in D \backslash W \mid H_{1}\right)=\beta$
$x \in W \Rightarrow H_{0}$ is rejected, H_{1} is considered correct	Wrong decision Type I error $p\left(x \in W \mid H_{0}\right)=\alpha$ is small	Rejecting H_{0} good, since $p\left(x \in W \mid H_{1}\right)=1-\beta$ is large.

The Neyman-Pearson test for simple hypotheses

$x=\left(x_{1}, \ldots, x_{n}\right):$ Random variable with the probability density $f_{N}(x ; \theta)$.

- $\theta=\theta_{0}$: Null hypothesis.
- $\theta=\theta_{1}$: Alternative hypothesis.
$\alpha=\int_{W_{\alpha}} f_{N}\left(x ; \theta_{0}\right) d x$.

$$
\begin{aligned}
1-\beta & =\int_{W_{\alpha}} f_{N}\left(x ; \theta_{1}\right) d x=\int_{W_{\alpha}} f_{N}\left(x ; \theta_{1}\right) \cdot \frac{f_{N}\left(x ; \theta_{0}\right)}{f_{N}\left(x ; \theta_{0}\right)} d x=\int_{W_{\alpha}} \frac{f_{N}\left(x ; \theta_{1}\right)}{f_{N}\left(x ; \theta_{0}\right)} \cdot f_{N}\left(x ; \theta_{0}\right) d x \\
& =E_{W_{\alpha}}\left(\frac{f_{N}\left(x ; \theta_{1}\right)}{f_{N}\left(x ; \theta_{0}\right)}\right)
\end{aligned}
$$

- $E_{W_{\alpha}}$ becomes particularly large when W_{α} contains those points x for which $\frac{f_{N}\left(x ; \theta_{1}\right)}{f_{N}\left(x ; \theta_{0}\right)}$ becomes particularly large.
- The best critical region is chosen by requiring

$$
\ell_{N}\left(x ; \theta_{0}, \theta_{1}\right):=\frac{f_{N}\left(x ; \theta_{1}\right)}{f_{N}\left(x ; \theta_{0}\right)} \geq c_{\alpha}
$$

for the points $x \in W_{\alpha}$.

The Neyman-Pearson test for simple ypotheses

$x=\left(x_{1}, \ldots, x_{n}\right):$ Random variable with the probability density $f_{N}(x ; \theta)$.

- $\theta=\theta_{0}$: Null hypothesis.
- $\theta=\theta_{1}$: Alternative hypothesis.
- The best critical region is chosen by requiring

$$
\ell_{N}\left(x ; \theta_{0}, \theta_{1}\right):=\frac{f_{N}\left(x ; \theta_{1}\right)}{f_{N}\left(x ; \theta_{0}\right)} \geq c_{\alpha}
$$

for the points $x \in W_{\alpha}$.
Neyman-Pearson Test. The likelihood ratio $\ell_{N}\left(x ; \theta_{0}, \theta_{1}\right)$ is used as the decision criterion:

- $\ell_{N}\left(x ; \theta_{0}, \theta_{1}\right) \geq c_{\alpha} \Rightarrow H_{1}$ is accepted, H_{0} is rejected.
- $\ell_{N}\left(x ; \theta_{0}, \theta_{1}\right)<c_{\alpha} \Rightarrow H_{0}$ is accepted, H_{1} is rejected.

Generalization to composite hypotheses

H_{0} and H_{1} contain unknown free parameters θ.

- Θ : Set of all possible θ values.
- ν : Subset of Θ.

Two families of hypotheses are introduced:

- $H_{0}: \theta \in \nu$.
- $H_{1}: \theta \in \Theta \backslash \nu$.

Example. Coupling strength $g . H_{0}: g=0 . H_{1}: g>0$.
ℓ_{N} is replaced by λ, which is taken as the ratio of two maximized likelihood functions:

$$
\lambda:=\frac{\max _{\theta \in \nu} L(x ; \theta)}{\max _{\theta \in \Theta} L(x ; \theta)}
$$

That is, using the method of maximum likelihood, the value of θ that best describes the experimental data is determined, and the corresponding likelihood value is compared with the result of the likelihood maximization for the null hypothesis. If the null hypothesis yields a significantly worse likelihood than the best description of the data, the null hypothesis is rejected.

- The probability density describing, for example, the outcome of a proton-proton collision measurement is composed of many probability densities and generally cannot be given analytically.
- The probability distribution can be obtained using the so-called Monte Carlo method.
- In the Monte Carlo method, the overall process is broken down into subprocesses $T_{1}, \ldots T_{n}$, for which the probability densities are known.
- Using a random number generator, an outcome of T_{1} is generated according to its probability density.
- For this outcome of T_{1}, the outcome of T_{2} is generated accordingly, and this procedure is continued up to T_{n}.
- If this is repeated very often, the probability distribution for the overall process is gradually obtained.

Example: Scattering of muons in thick layers

Scattering of heavy charged particles in thin layers

- Energy loss in the layer is negligible.
- $V_{S} \approx \frac{1}{2} d \theta_{E}$.
- θ_{E} is approximately normally distributed around 0 with the standard deviation

$$
\theta_{0}:=\frac{13.6 \mathrm{MeV}}{E} \sqrt{\frac{d}{X_{0}}}
$$

Strahlungslänge der Schicht: X_{0}

Example: Scattering of muons in thick layers

Goal: Scattering in thick layers

Differences

- $V_{S} \neq \frac{1}{2} d \theta_{E}$.
- Energy loss is not negligible.

Solution

- Divide the thick layer into many thin layers.
- Describe the passage through thick layers as a sequence of random processes, namely as a sequence of scatterings in the thin layers.
- (Deterministic) random number generators refer to computer programs that can generate a sequence of pseudorandom numbers.
- They are called pseudorandom numbers because, although the generated numbers appear random, they are produced using a deterministic algorithm.
- If you have a random number generator that produces random numbers uniformly distributed in an interval $[a, b]$, you can generate random numbers according to any probability distribution.

- First, generate a uniformly distributed random number $x \in[a, b]$.
- Then, generate a uniformly distributed random number $y \in\left[0, f_{\max }\right]$.
- If $y<f(x)$, keep the random number x; otherwise, discard it and generate a new number $x \in[a, b]$ until $y<f(x)$.

Interaction of particles with matter

Two effects when charged particles pass through matter

- Energy loss.
- Deflection from the original trajectory.

Responsible processes

- Inelastic collisions with atomic electrons in the material.
- Elastic scattering off the atomic nuclei in the material.
- Emission of Čerenkov radiation.
- Nuclear reactions.
- Bremsstrahlung.

For heavy charged particles, the first two processes are dominant.
Heavy charged particles include $\mu^{ \pm}, \pi^{ \pm}, p, \bar{p}, \alpha$ particles, and light nuclei.

Energy loss of heavy charged particles

Heavy charged particles lose energy through excitation and ionization of atoms. The energy loss per unit path length is described by the Bethe-Bloch formula:

$$
-\frac{d E}{d x}=\frac{4 \pi n z^{2}}{m_{e} c^{2} \beta^{2}} \cdot\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2} \cdot\left[\ln \left(\frac{2 m_{e} c^{2} \beta^{2}}{I\left(1-\beta^{2}\right)}-\beta^{2}\right)\right]
$$

$\beta=v / c$: Velocity of the particle. E : Energy of the particle.
z : Charge of the particle. e : Elementary charge. n : Electron density of the material. I : Mean excitation potential of the material.

Multiple scattering

Atomkern
Ladung: Ze
Scattering off a single nucleus:

$$
\theta=\frac{\Delta p}{p} \propto \frac{z \cdot Z}{p} .
$$

$$
<\theta>=0,0 \neq \theta_{0}^{2}:=\operatorname{Var}(\theta) \propto \frac{z^{2} \cdot Z^{2}}{p^{2}}
$$

Scattering off many nuclei:

$$
\Theta_{0}^{2}:=\operatorname{Var}(\Theta)=\sum_{\text {collisions }} \theta_{0}^{2} \propto D \cdot \frac{z^{2} \cdot Z^{2}}{p^{2}}
$$

Thus, one obtains $\Theta_{0} \propto \frac{\sqrt{D}}{p}$.

Energy loss of electrons and positrons

The mass m_{e} is so small that the acceleration experienced by electrons or positrons in collisions with atomic nuclei is significant enough to emit bremsstrahlung photons.

$$
\left.\frac{d E}{d x}\right|_{e^{ \pm}}=\left.\frac{d E}{d x}\right|_{\text {collisions }}+\left.\frac{d E}{d x}\right|_{\text {bremsstrahlung }}
$$

Critical Energy E_{k}
$\left.\frac{d E}{d x}\right|_{\text {collisions }}\left(E_{k}\right)=\left.\frac{d E}{d x}\right|_{\text {bremsstrahlung }}$
$E_{k} \approx \frac{800 \mathrm{MeV}}{Z+1 / 2}$, hence above $E_{e^{ \pm}}>1 \mathrm{GeV}$, bremsstrahlung is dominant.

Main Processes

- Photoelectric effect in the energy range $E_{\gamma} \sim \mathrm{keV}$.
- Compton scattering in the energy range $E_{\gamma} \sim \mathrm{MeV}$.
- Electron-positron pair production for $E_{\gamma} \gtrsim 10 \mathrm{MeV}$.

Formation of so-called electromagnetic showers in the traversed material. Detailed examination in the next lecture.

Consequence for high-energy photono After traveling a distance of $n \cdot X_{0}: 2^{n}$ particles with energy $E_{n} \approx \frac{E_{\gamma}}{2^{n}}$.

- Cascade (shower) ends when $E_{n}=E_{k}: n=\frac{\ln \frac{E_{\gamma}}{E_{k}}}{\ln 2}$.
- Length of the cascade: $n \cdot X_{0}=X_{0} \cdot \frac{\ln \frac{E_{\gamma}}{E_{k}}}{\ln 2}$.
- Transverse extent of the cascade independent of E_{γ} :
$L_{\perp} \approx 4 R_{M}=4 X_{0} \frac{21.2 \mathrm{MeV}}{E_{k}}$.

Hadron shower

Hochenergie-Kaskade

Evaporation

Spaltung

Qualitatively similar behavior to electromagnetic showers:

- Shower length proportional to $\lambda_{A} \approx 35 \mathrm{~g} \mathrm{~cm}^{-2} \frac{A^{1 / 3}}{\rho} \gg X_{0}$.
- Transverse extent independent of the energy of the primary hadron: λ_{A}.

