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Examples of important probability distributions



Recapitulation of the previous lecture
Interval estimation

Goal: Determination of an interval which contains the true value of a
parameter with a given probability.

Limit case of the normal distribution
Let us assume the variable x ∈ |R is normally distributed, i.e.

p(x ) = N (x ;µ, σ) =
1√
2πσ

e−
1
2

(x−µ)2

σ2 .

If µ and σ are known, then

p(a < x < b) =

b∫
a

N (x ;µ, σ)dx =: β.

If µ is unknown, one can calculate p(µ+ c < x < µ+ d):

β =p(µ+ c < x < µ+ d) =

µ+d∫
µ+c

1√
2πσ

e−
1
2

(x−µ)2

σ2 dx=

d∫
c

1√
2πσ

e−
1
2

y2

σ2 dy

= p(c − x < −µ < d − x ) = p(x − d < µ < x − c).
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Recapitulation of the previous lecture

Interval estimation with the normal distribution

β =p(µ+ c < x < µ+ d) =

µ+d∫
µ+c

1√
2πσ

e−
1
2

(x−µ)2

σ2 dx=

d∫
c

1√
2πσ

e−
1
2

y2

σ2 dy

= p(c − x < −µ < d − x ) = p(x − d < µ < x − c).

That is, if x has been measured, the probability that the desired value of µ
lies between x − d and x − c is equal to β.

If x is a parameter α̂ from a point estimation conducted using the
method of maximum likelihood or the method of least squares, then α̂
is asymptotically normally distributed, and the above formulas can be
applied for interval estimation.

The intervals [a, b] or [x − d , x − c] are called confidence intervals. β is
the confidence level corresponding to the confidence level.
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Recapitulation of the previous lecture

Generalization to the multidimensional case

Q(x ;µ,Σ) := (x − µ)tΣ−1(x − µ), x , µ ∈ |R.

p(Q) =
1

(2π)d/2
· 1√

det(Σ)
exp

(
−1

2
Q(x ;µ,Σ)

)
.

In multiple dimensions, the confidence interval becomes a confidence
region corresponding to the confidence level β:

p(Q(x ;µ,Σ) < K 2
β ) = β.
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Recapitulation of the previous lecture

Likelihood-based confidence intervals

−2 lnN (x = µ± σ;µ, σ)− [−2 lnN (x = µ;µ, σ] = 1.
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Recapitulation of the previous lecture

Likelihood-based confidence intervals
Generalization
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Confidence Interval: [α−, α+].
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Recapitulation of the previous lecture
Hypothesis testing
Goal, to determine which hypothesis (for a probability distribution)

describes the recorded data point distributions (data).
Nomenclature. H0: null hypothesis.

H1: alternative hypothesis.
Simple and Composite Hypotheses

When the hypotheses H0 and H1 are given
completely without free parameters, the hypotheses are called simple
hypotheses.
If a hypothesis contains at least one free parameter, it is referred to
as a composite hypothesis.

Procedure
For hypothesis testing, W must be chosen such that

p(data ∈ W |H0) = α

with a small value of α and simultaneously

p(data ∈ D\W |H1) = β

with the smallest possible β.
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Discovery of the Higgs boson
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Discovery of the Higgs boson

Interval I

Number of events in I

13.6 without a Higgs boson,
Observed: 50.

⇒ Excess of
36.4 Events
> 13, 6 + 5 ·

√
13, 6 = 32.

So the probability that the
observed excess is caused by a
statistical fluctuation of the
“red distribution” is extremely
small.
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Recapitulation of the previous lecture
Introductory example of hypothesis testing
A theoretical model predicts the existence of a particle with mass M , the
production cross-section, and the partial width for decay into a photon
pair. To confirm or refute this model, one must examine the distribution
of mγγ.

dn

dm γγ

mγγmm1 2

Verteilung, falls

das Modell falsch ist

Verteilung, falls das Modell

richtig ist

In the interval [m1,m2], one is
sensitive to the model’s prediction.
There are two hypotheses, namely
that the theory is correct or
incorrect.

H0: Null hypothesis: TTheory is
incorrect.“

H1: Alternative hypothesis: TTheory
is correct.“

With a sufficiently large amount of data, the probability that the measured
mγγ distribution looks like H0 is small if the theory is correct. At the same
time, the probability that the measured mass distribution looks like H1 is
large.
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Recapitulation of the previous lecture
Introductory example of hypothesis testing

dn

dm γγ

mγγmm1 2

Verteilung, falls

das Modell falsch ist

Verteilung, falls das Modell

richtig ist

n: Number of events measured in the interval [m1,m2].
One must now choose a threshold value N such that

p(n > N |H0) = α

with a small value of α and

p(n ≤ N |H1) = β

is as small as possible if the theory, i.e., H1, is correct.
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Recapitulation of the previous lecture

Introductory example – experimental practice
n: Number of events measured in the interval [m1,m2].
One must now choose a threshold value N such that

p(n > N |H0) = α

with a small value of α and

p(n ≤ N |H1) = β

is as small as possible if the theory, i.e., H1, is correct.

Experimental Practice

α = 5.7 · 10−7, which corresponds to 5σ of a normal distribution, to
claim the discovery of a particle.
With a value of α = 0.3%, which corresponds to 3σ of a normal
distribution, one says there is evidence for the existence of a new
particle.
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Recapitulation of the previous lecture
Type I and type II errors
The confidence level α is defined as the probability that x ∈ W if the null
hypothesis H0 is correct:

p(x ∈ W |H0) = α.

The probability β represents the likelihood of incorrectly rejecting the
alternative hypothesis H1:

p(x ∈ D\W |H1) = β.

H0 correct H1 correct
Approach
x /∈ W ⇒ H0 is Good acceptance, since Contamination
considered correct p(x ∈ D\W |H0) = 1− α Type II error

is large p(x ∈ D\W |H1) = β.
x ∈ W ⇒ H0 is Wrong decision Rejecting H0

rejected, H1 is Type I error good, since
considered correct p(x ∈ W |H0) = α p(x ∈ W |H1) = 1− β

is small is large.
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The Neyman-Pearson test for simple hypotheses
x = (x1, . . . , xn): Random variable with the probability density fN (x ; θ).

θ = θ0: Null hypothesis.
θ = θ1: Alternative hypothesis.

α =

∫
Wα

fN (x ; θ0)dx .

1− β =

∫
Wα

fN (x ; θ1)dx =

∫
Wα

fN (x ; θ1) ·
fN (x ; θ0)

fN (x ; θ0)
dx =

∫
Wα

fN (x ; θ1)

fN (x ; θ0)
· fN (x ; θ0)dx

= EWα

(
fN (x ; θ1)

fN (x ; θ0)

)
.

EWα becomes particularly large when Wα contains those points x for
which fN (x ;θ1)

fN (x ;θ0)
becomes particularly large.

The best critical region is chosen by requiring

ℓN (x ; θ0, θ1) :=
fN (x ; θ1)

fN (x ; θ0)
≥ cα

for the points x ∈ Wα.
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The Neyman-Pearson test for simple ypotheses

x = (x1, . . . , xn): Random variable with the probability density fN (x ; θ).

θ = θ0: Null hypothesis.

θ = θ1: Alternative hypothesis.

The best critical region is chosen by requiring

ℓN (x ; θ0, θ1) :=
fN (x ; θ1)

fN (x ; θ0)
≥ cα

for the points x ∈ Wα.

Neyman-Pearson Test. The likelihood ratio ℓN (x ; θ0, θ1) is used as the
decision criterion:

ℓN (x ; θ0, θ1) ≥ cα ⇒ H1 is accepted, H0 is rejected.
ℓN (x ; θ0, θ1) < cα ⇒ H0 is accepted, H1 is rejected.
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Generalization to composite hypotheses
H0 and H1 contain unknown free parameters θ.

Θ: Set of all possible θ values.
ν: Subset of Θ.

Two families of hypotheses are introduced:
H0: θ ∈ ν.
H1: θ ∈ Θ\ν.

Example. Coupling strength g. H0: g = 0. H1: g > 0.
ℓN is replaced by λ, which is taken as the ratio of two maximized
likelihood functions:

λ :=
max
θ∈ν

L(x ; θ)

max
θ∈Θ

L(x ; θ)

That is, using the method of maximum likelihood, the value of θ that best
describes the experimental data is determined, and the corresponding
likelihood value is compared with the result of the likelihood maximization
for the null hypothesis. If the null hypothesis yields a significantly worse
likelihood than the best description of the data, the null hypothesis is
rejected.
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Monte Carlo method

The probability density describing, for example, the outcome of a
proton-proton collision measurement is composed of many probability
densities and generally cannot be given analytically.
The probability distribution can be obtained using the so-called Monte
Carlo method.

In the Monte Carlo method, the overall process is broken down
into subprocesses T1, . . .Tn , for which the probability densities are
known.
Using a random number generator, an outcome of T1 is generated
according to its probability density.
For this outcome of T1, the outcome of T2 is generated
accordingly, and this procedure is continued up to Tn .
If this is repeated very often, the probability distribution for the
overall process is gradually obtained.
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Example: Scattering of muons in thick layers

Scattering of heavy charged particles in thin layers

d

Teilchen

Energie E)
(Ladung q,

PSfrag replacements

θE

VS

Strahlungslänge der Schicht: X0

Energy loss in the layer is negligible.

VS ≈ 1
2dθE .

θE is approximately normally distributed around
0 with the standard deviation

θ0 :=
13.6 MeV

E

√
d

X0
.
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Example: Scattering of muons in thick layers

Goal: Scattering in thick layers
Differences

VS ̸= 1
2dθE .

Energy loss is not negligible.

Solution

Divide the thick layer into many thin layers.

Describe the passage through thick layers as a sequence of random
processes, namely as a sequence of scatterings in the thin layers.
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Random number generators

(Deterministic) random number generators refer to computer
programs that can generate a sequence of pseudorandom numbers.

They are called pseudorandom numbers because, although the
generated numbers appear random, they are produced using a
deterministic algorithm.

If you have a random number generator that produces random
numbers uniformly distributed in an interval [a, b], you can generate
random numbers according to any probability distribution.

fmax

x

f(x)

a b

First, generate a uniformly distributed
random number x ∈ [a, b].

Then, generate a uniformly
distributed random number
y ∈ [0, fmax ].

If y < f (x ), keep the random number
x ; otherwise, discard it and generate
a new number x ∈ [a, b] until y < f (x ).
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Interaction of particles with matter A recapitulation



Interaction of heavy charged particles with matter

Two effects when charged particles pass through matter

Energy loss.
Deflection from the original trajectory.

Responsible processes

Inelastic collisions with atomic electrons in the material.
Elastic scattering off the atomic nuclei in the material.
Emission of Čerenkov radiation.
Nuclear reactions.
Bremsstrahlung.

For heavy charged particles, the first two processes are dominant.
Heavy charged particles include µ±, π±, p, p̄, α particles, and light nuclei.
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Energy loss of heavy charged particles
Heavy charged particles lose energy through excitation and ionization of
atoms. The energy loss per unit path length is described by the
Bethe-Bloch formula:

−dE

dx
=

4πnz 2

mec2β2
·
(

e2

4πϵ0

)2

·
[
ln

(
2mec

2β2

I (1− β2)
− β2

)]
;

β = v/c: Velocity of the particle. E : Energy of the particle.
z : Charge of the particle. e: Elementary charge. n: Electron density of the material.
I : Mean excitation potential of the material.
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Multiple scattering

Atomkern

Ladung: Ze

Teilchen (Ladung: ze)

Schweres geladenes

θ

Scattering off a single nucleus:

θ =
∆p

p
∝ z · Z

p
.

< θ >= 0, 0 ̸= θ20 := Var(θ) ∝ z 2 · Z 2

p2
.

Θ

D

Scattering off many nuclei:

< Θ > = 0

Θ2
0 := Var(Θ) =

∑
collisions

θ20 ∝ D · z
2 · Z 2

p2
.

Thus, one obtains Θ0 ∝
√
D
p .
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Energy loss of electrons and positrons

The mass me is so small that the acceleration experienced by electrons or
positrons in collisions with atomic nuclei is significant enough to emit
bremsstrahlung photons.

dE

dx

∣∣∣∣
e±

=
dE

dx

∣∣∣∣
collisions

+
dE

dx

∣∣∣∣
bremsstrahlung

.

Critical Energy Ek

dE

dx

∣∣∣∣
collisions

(Ek ) =
dE

dx

∣∣∣∣
bremsstrahlung

(Ek ).

Ek ≈ 800 MeV
Z+1/2 , hence above

Ee± > 1 GeV, bremsstrahlung is
dominant.
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Interaction of photons with matter

Main Processes

Photoelectric effect in the energy range Eγ ∼keV.
Compton scattering in the energy range Eγ ∼MeV.
Electron-positron pair production for Eγ ≳ 10 MeV.

Formation of so-called electromagnetic showers in the traversed material.
Detailed examination in the next lecture.
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Electron-photon shower

X0

X0

X0
X0

+e

e−

γ
E   >1 GeV

...

Consequence for high-energy photons After traveling a distance of
n ·X0: 2n particles with energy En ≈ Eγ

2n .

Cascade (shower) ends when En = Ek : n =
ln

Eγ
Ek

ln 2 .

Length of the cascade: n ·X0 = X0 ·
ln

Eγ
Ek

ln 2 .

Transverse extent of the cascade independent of Eγ:
L⊥ ≈ 4RM = 4X0

21.2 MeV
Ek

.

28 28



Hadron shower

Qualitatively similar behavior
to electromagnetic showers:

Shower length
proportional to
λA ≈ 35 g cm−2A1/3

ρ ≫ X0.

Transverse extent
independent of the
energy of the primary
hadron: λA.
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