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Motivation

- want to find a quantum theory of gravity

- consider toy models in three dimensions
simpler, yet contain BTZ bh, propagating graviton waves . . .

- focus on models which are holographically dual
to conformal field theories (CFT), i.e.
expand around maximally symmetric (anti de Sitter) vacua

• at certain points in parameter space these CFTs degenerate
to logarithmic conformal field theories (LCFT)

• LCFTs appear in condensed matter physics
to describe systems with quenched disorder
(spin glasses, quenched random magnets, percolation)
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Outline

• defining features of an LCFT

◦ logarithmic pair
◦ two-point correlators

• example of a gravity dual to a(n) (L)CFT
◦ action and parameters
◦ possible degenerations

• conclusion and outlook
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LCFT – a logarithmic pair

• the Hamiltonian does not diagonalize

• two operators have degenerate conformal weights
and form a logarithmic pair

H

(
Olog

O

)
=

(
E 1
0 E

)(
Olog

O

)
J

(
Olog

O

)
=

(
j 0
0 j

)(
Olog

O

)

• if more than two operators degenerate we can have triples, . . .

• the rank of the Jordan cell denotes the level of degeneration
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LCFT – two-point correlators

• there are logs in the correlators

• one state becomes zero norm

• if O = OL ≡ Tzz(z) the central charge cL vanishes

• non-vanishing correlators are given by the new anomaly b

〈
O(z)O(0)

〉
=

0

2z2h〈
O(z)Olog(0, 0)

〉
=

b

2z2h〈
Olog(z , z̄)Olog(0, 0)

〉
= −

b ln (m2
L|z |2)

z2h
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Generalized Massive Gravity

We consider a three-dimensional model of gravity with the following
action

SGMG =
1

κ

∫
d3x
√
−g
{

σR − 2λm2 +
1

µ
LCS +

1

m2
K
}

(1)

- R. . . Ricci scalar

- λ. . . cosmological constant, to have black hole solutions

- LCS . . . Chern–Simons term, adding a graviton

- K . . . quadratic in R, another graviton
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GMG – equations of motion

• linearize around AdS : gµν = gAdS
µν + hµν

• the action is of fourth order in derivatives

• we can write the equations of motion as

DLDRDm1Dm2h = 0

• D i are commuting, first order differential operators

• DL and DR are fixed; gauge degrees of freedom

• Dm1 and Dm2 are two (physical) degrees of freedom
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GMG – log solutions

• when two D i degenerate their solutions do so too

• presents us with a new, logarithmic solution

• for example Dm → DL

(hL, hm) → (hL, hlog := lim
`m→1

hL − hm

1− `m
)

• consider all possible degenerations
that we get by tuning m1 and m2
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GMG – parameter space

• Dm1 = DL:
Tzz has log-partner!

• Dm1 = Dm2 :
OM has log-partner!

• Dm1 = Dm2 = DL:
Rank three Jordan cell!

• cL = cR = 0: log-NMG
Both Tzz and Tz̄ z̄ logged!

• PMG! cL = cR 6= 0
Enhanced gauge symmetry!

6

m2`

-m1`

cL = 0

cL = 0cR = 0

cR = 0

m1 = m2

NMG

es
es v
v u
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GMG – rank two LCFT dual

H

(
Olog

OL

)
=

(
2 1
0 2

)(
Olog

OL

)
and J

(
Olog

OL

)
=

(
2 0
0 2

)(
Olog

OL

)
〈
OL(z)OL(0)

〉
= 0〈

OL(z)Olog(0, 0)
〉

=
bL
2z4〈

Olog(z , z̄)Olog(0, 0)
〉

= −bL log |z |2

z4
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GMG – rank three LCFT dual

H

Olog2

Olog

OL

 =

2 1 0
0 2 1
0 0 2

Olog2

Olog

OL


and diag(2, 2, 2) for J.〈

OL(z)OL(0)
〉

=
〈
OL(z)Olog(0, 0)

〉
= 0〈

Olog(z , z̄)Olog(0, 0)
〉

=
〈
OL(z)Olog2

(0, 0)
〉

=
aL

2z4〈
Olog(z , z̄)Olog2

(0, 0)
〉

= −aL log |z |2

z4〈
Olog2

(z , z̄)Olog2

(0, 0)
〉

=
aL log2 |z |2

z4
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Conclusion and Outlook

• calculated two-point correlators on gravity side

◦ obtained values for the new anomalies aL, bL
◦ collected evidence for the LCFT conjecture

• calculate the one-loop partition function for GMG

• define the chiral subsector of the LCFT

Thank you for your attention!
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Thank you!
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Generalized Massive Gravity

We consider a three-dimensional model of gravity with the action

SGMG =
1

κ

∫
d3x
√
−g
{
σR − 2λm2 +

1

µ
LCS +

1

m2
K
}

(2)

where

LCS =
1

2
ελµνΓαλσ

[
∂µΓσαν +

2

3
ΓσµτΓτνα

]
(3)

K = RµνR
µν − 3

8
R2 . (4)
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Expressions for D and m±

(DLDRDm+Dm−h)µν = 0

with

(DL/R) ν
µ = δ ν

µ ± `ε αν
µ ∇α (5)

(Dm±) ν
µ = δ ν

µ +
1

m±
ε αν
µ ∇α (6)

and

`m± =
m2`2

2µ`
±

√
m4`4

4µ2`2
− σm2`2 +

1

2
. (7)
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CFT – obtaining a logarithmic partner operator

Again we obtain the logarithmic operator Olog by considering the
difference between Om and OL:

Om(ε = 0) = OL (8)(
h(ε), h̄(ε)

)
=
(
2 + ε, ε

)
(9)

and define

Olog := lim
ε→0

Om(ε)−OL

ε
(10)

18 of 18


	Generalized Massive Gravity

