Christian Fruck cfruck@ph.tum.de

Major Atmospheric

Gamma Imaging **Cerenkov Telescopes**

Ap Ag>it

Max-Plank-Institut für Physik

18th IMPRS Workshop Munich, December 6, 2010 Imaging Airshower Cherenkov Telescope (IACT) Technique and LIDAR

The MAGIC micro LIDAR system

First measurements and their evaluation

Conclusion

The atmosphere as imaging calorimeter

- \blacktriangleright indirect observation method in the VHE- γ regime
- light not from astronomical source but generated in the atmosphere
- precise knowledge of the optical conditions important to reconstruct primary energy

The IACT technique

- different altitudes are projected into different parts of the image
- airshower geometry can be reconstructed from image
- position in image can be related to altitude

The IACT technique

- different altitudes are projected into different parts of the image
- airshower geometry can be reconstructed from image
- position in image can be related to altitude
- stereo observations improve reconstruction accuracy

need to know range resolved atmospheric attenuation

A new LIDAR system for the MAGIC telescopes Imaging Airshower Cherenkov Telescope (IACT) Technique and LIDAR

need to know range resolved atmospheric attenuation
LIDAR: Light Detection And Ranging

need to know range resolved atmospheric attenuation
LIDAR: Light Detection And Ranging

- ▶ N_0 , dN(r): photons: in laser pulse, in range bin
- C, G(r): overall efficiency, overlap (laser-FOV) and focus effects
- $\frac{A}{r^2}$: solid angle (detector seen from location of scattering)
- $\dot{\beta}(r) dr$: volume backscattering coefficient times range bin length
- exp $\left(-2\int_{0}^{r}\sigma(r')dr'\right)$ total attenuation on the way
- two unknown functions: $\beta(r)$ and $\sigma(r)$

General problems of LIDAR

range resolution is no problem

General problems of LIDAR

- range resolution is no problem
- molecular backscattering/extinction known (Rayleigh)
- \Rightarrow attenuation coefficient

General problems of LIDAR

- range resolution is no problem
- molecular backscattering/extinction known (Rayleigh)
- \Rightarrow attenuation coefficient
 - ► otherwise solution of the LIDAR equation not possible (aerosols, example: Mie 10 µm water sphere, light from left)

 multi wavelength, Raman or High Spectral Resolution LIDAR (HSRL)

- multi wavelength, Raman or High Spectral Resolution LIDAR (HSRL)
- \Rightarrow more power needed, not suitable for 'micro'-LIDAR

- multi wavelength, Raman or High Spectral Resolution LIDAR (HSRL)
- \Rightarrow more power needed, not suitable for 'micro'-LIDAR
- Klett's backintegration method: need some relationship between backscattering β and total scattering σ (empirical) [J. D. Klett 1981]

$$\beta = const. \ \sigma^k, \ k \approx 0.7 \dots 1.0$$
$$\sigma(r) = \frac{\exp\left(\frac{S(r) - S_m}{k}\right)}{\frac{1}{\sigma_m} - \frac{2}{k} \int_r^{r_m} \exp\left(\frac{S(r) - S_m}{k}\right) dr'}$$
$$S(r) = \ln(N(r) \ r^2)$$

- multi wavelength, Raman or High Spectral Resolution LIDAR (HSRL)
- \Rightarrow more power needed, not suitable for 'micro'-LIDAR
- Klett's backintegration method: need some relationship between backscattering β and total scattering σ (empirical) [J. D. Klett 1981]

$$\beta = const. \ \sigma^{k}, \ k \approx 0.7 \ .. \ 1.0$$
$$\sigma(r) = \frac{\exp\left(\frac{S(r) - S_{m}}{k}\right)}{\frac{1}{\sigma_{m}} - \frac{2}{k} \int_{r}^{r_{m}} \exp\left(\frac{S(r) - S_{m}}{k}\right) dr'}$$
$$S(r) = \ln(N(r) \ r^{2})$$

but: not really useful for our application

The LIDAR system at the MAGIC site

- recently installed inside the LIDAR tower in a weather proof dome
- \blacktriangleright on top of the counting house $\approx 50\,\mathrm{m}$ from both telescopes
- ► Roque de los Muchachos, optical telescope site ⇒ 'micro' -LIDAR

The LIDAR system at the MAGIC site

- recently installed inside the LIDAR tower in a weather proof dome
- \blacktriangleright on top of the counting house $\approx 50\,\mathrm{m}$ from both telescopes
- \blacktriangleright Roque de los Muchachos, optical telescope site \Rightarrow 'micro' LIDAR

LASER, optics and mount

- frequency doubled, passively Q-swiched Nd:YAG 532 nm
- pulse energy and width: $5.1 \,\mu J$, $0.5 \,ns$
- pulse frequency: with external trigger up to 2 kHz
- beam expander optics $10 \times$ to reduce the beam divergence
- ▶ telescope: mirror diameter 60 cm, focal length: 160 cm

- equatorial robotic mount
- designed for EELT site-search
- 80kg load plus counterweights
- ASCOM interface support

- HAMAMATSU R9792U-40 operated at up to 8kV
- HPD gain pprox 100000
- ► QE ≈ 50 % at 532nm

- HAMAMATSU R9792U-40 operated at up to 8kV
- HPD gain pprox 100000
- ► QE ≈ 50 % at 532nm

Readout and data analysis

- PCI FADC Spectrum MI.2030, 8bit, 200MSample/s in PC: Intel Q6600, 4GB
- recording triggered by internal laser PIN-diode
- \blacktriangleright for 50k shots, \approx 2GB of memory are used for raw data
- single photon counting and background subtraction by software

Simulations and an introduction to LIDAR return signals

Simulations and an introduction to LIDAR return signals

Simulations and an introduction to LIDAR return signals

Determining the light extinction of a thin cloud layer

undisturbed Rayleigh atmosphere is locally exponential:

$$N(r) \cdot r^2 = C \cdot \exp s \cdot r; \quad T = \sqrt{C_2/C_1}$$

Determining the light extinction of a thin cloud layer

undisturbed Rayleigh atmosphere is locally exponential:

$$N(r) \cdot r^2 = C \cdot \exp s \cdot r; \quad T = \sqrt{C_2/C_1}$$

Determining the light extinction of a Calima layer

laser light passes a given layer twice

• transmission
$$T = \sqrt{\frac{p0_2}{p0_1}} = 80\%$$

 \blacktriangleright \Rightarrow spatial extension and transmission

Determining the light extinction of a Calima layer

laser light passes a given layer twice

• transmission
$$T = \sqrt{\frac{p0_2}{p0_1}} = 80\%$$

 \blacktriangleright \Rightarrow spatial extension and transmission

How to correct the energy spectra

 determine location and light extinction of a thin aerosol or cloud layer

How to correct the energy spectra

- determine location and light extinction of a thin aerosol or cloud layer
- extrapolate extinction to Cherenkov spectrum (Mie scattering roughly wavelength independent)

How to correct the energy spectra

- determine location and light extinction of a thin aerosol or cloud layer
- extrapolate extinction to Cherenkov spectrum (Mie scattering roughly wavelength independent)
- then either use large sets of Monte Carlo simulations

How to correct the energy spectra

- determine location and light extinction of a thin aerosol or cloud layer
- extrapolate extinction to Cherenkov spectrum (Mie scattering roughly wavelength independent)
- then either use large sets of Monte Carlo simulations
- or directly apply to data if possible

A new LIDAR system for the MAGIC telescopes \square Conclusion

- still in testing phase
- need to avoid disturbing MAGIC measurements or the other telescopes on the Roque de los Muchachos
- parallel operation during MAGIC observations has already started

A new LIDAR system for the MAGIC telescopes \square Conclusion

Thanks for your attention!