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A new LIDAR system for the MAGIC telescopes

Imaging Airshower Cherenkov Telescope (IACT) Technique and LIDAR

The atmosphere as imaging calorimeter

I indirect observation method in the VHE-γ
regime

I light not from astronomical source but
generated in the atmosphere

I precise knowledge of the optical conditions
important to reconstruct primary energy
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The IACT technique

I different altitudes are
projected into
different parts of the
image

I airshower geometry
can be reconstructed
from image

I position in image can
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Imaging Airshower Cherenkov Telescope (IACT) Technique and LIDAR

I need to know range resolved atmospheric attenuation

⇒ LIDAR: Light Detection And Ranging
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I N0,dN(r): photons: in laser pulse, in range bin
I C ,G(r): overall efficiency, overlap (laser-FOV) and focus effects
I A

r2
: solid angle (detector seen from location of scattering)

I β(r)dr : volume backscattering coefficient times range bin length
I exp

(
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∫ r
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σ(r ′)dr ′

)
total attenuation on the way

I two unknown functions: β(r) and σ(r)
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A new LIDAR system for the MAGIC telescopes

Imaging Airshower Cherenkov Telescope (IACT) Technique and LIDAR

General problems of LIDAR
I range resolution is no problem

I molecular backscattering/extinction known (Rayleigh)
⇒ attenuation coefficient
I otherwise solution of the LIDAR equation not possible

(aerosols, example: Mie 10µm water sphere, light from left)
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A new LIDAR system for the MAGIC telescopes

Imaging Airshower Cherenkov Telescope (IACT) Technique and LIDAR

Strategies about these difficulties
I multi wavelength, Raman or High Spectral Resolution LIDAR

(HSRL)

⇒ more power needed, not suitable for ’micro’-LIDAR
I Klett’s backintegration method:

need some relationship between backscattering β and total
scattering σ (empirical) [J. D. Klett 1981]

β = const. σk , k ≈ 0.7 .. 1.0

σ(r) =
exp

(
S(r)−Sm

k

)
1
σm
− 2

k

∫ rm
r exp

(
S(r)−Sm

k

)
dr ′

S(r) = ln(N(r) r2)

I but: not really useful for our application
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A new LIDAR system for the MAGIC telescopes

The MAGIC micro LIDAR system

The LIDAR system at the MAGIC site
I recently installed inside the LIDAR tower in a weather proof

dome
I on top of the counting house ≈ 50m from both telescopes
I Roque de los Muchachos, optical telescope site ⇒ ’micro’ -

LIDAR
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A new LIDAR system for the MAGIC telescopes

The MAGIC micro LIDAR system

Counter weights

Polar telescope mount

60 cm diameter milled aluminium mirror
Laser mount (adjustable for beam alignment)

Stiff Aluminium telescope tube

Pulsed, frequency doubled Nd:YAG laser

Diaphragm for limiting field of view to beam

Lens pair for parallel light in interference filter

High QE Hybrid Photon Detector (HPD)

PCB with signal amplifier and HPD power supply

Interference filter 3nm bandwidth

Detector module
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A new LIDAR system for the MAGIC telescopes

The MAGIC micro LIDAR system

LASER, optics and mount

I frequency doubled, passively Q-swiched Nd:YAG 532 nm
I pulse energy and width: 5.1µJ, 0.5ns
I pulse frequency: with external trigger up to 2 kHz
I beam expander optics 10× to reduce the beam divergence
I telescope: mirror diameter 60 cm, focal length: 160 cm

I equatorial robotic mount
I designed for EELT site-search
I 80kg load plus counterweights
I ASCOM interface support
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A new LIDAR system for the MAGIC telescopes

The MAGIC micro LIDAR system

I HAMAMATSU
R9792U-40 operated
at up to 8kV

I HPD gain ≈ 100000

I QE ≈ 50 % at
532nm en
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+400V

focusing

GaAsP photocathode

e -

avalanche diode

out
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A new LIDAR system for the MAGIC telescopes

The MAGIC micro LIDAR system

Readout and data analysis

I PCI FADC Spectrum MI.2030, 8bit, 200MSample/s in PC:
Intel Q6600, 4GB

I recording triggered by internal laser PIN-diode

I for 50k shots, ≈ 2GB of memory are used for raw data

I single photon counting and background subtraction by
software
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A new LIDAR system for the MAGIC telescopes

First measurements and their evaluation

Simulations and an introduction to LIDAR return signals

range [m]
0 5000 10000 15000 20000 25000
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×
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b
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]

1010

1110

1210

LIDAR SIM

Signal increase due to additional
Mie scattering inside cloud

Non complete overlap
and pileup region

Signal from behind, attenuated by the cloud

Noise from low photon statistics
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range [m]
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First measurements and their evaluation

Simulations and an introduction to LIDAR return signals
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A new LIDAR system for the MAGIC telescopes

First measurements and their evaluation

Determining the light extinction of a thin cloud layer

range [m]
0 5000 10000 15000 20000 25000

 R
²

×
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 / ndf 2χ  127.5 / 51

Const     3.367e+009± 1.77e+011 

Slope         0± -9.833e-005 

 / ndf 2χ  127.5 / 51

Const     3.367e+009± 1.77e+011 

Slope         0± -9.833e-005 

Transmission through layers:

T1 = 0.924471

T2 = 0.000000

ALT: 54.5309
AZ: 31.482
RA: 10
DEC: 55.4
shots: 25000

14.11.10 05-39-02.dat

I undisturbed Rayleigh atmosphere is locally exponential:

N(r) · r2 = C · exp s · r ; T =
√

C2/C1
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First measurements and their evaluation

Determining the light extinction of a thin cloud layer

range [m]
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Slope         0± -8.592e-005 

 / ndf 2χ  141.2 / 74

Const     2.573e+009± 1.232e+011 

Slope         0± -8.592e-005 

Transmission through layers:

T1 = 0.980739
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ALT: 56.5817
AZ: 28.5276
RA: 10
DEC: 55.4
shots: 25000

14.11.10 05-59-02.dat

I undisturbed Rayleigh atmosphere is locally exponential:

N(r) · r2 = C · exp s · r ; T =
√

C2/C1
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A new LIDAR system for the MAGIC telescopes

First measurements and their evaluation

Determining the light extinction of a Calima layer

range [m]
0 5000 10000 15000 20000 25000
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 / ndf 2χ  38.86 / 42

p0        4.527e+008± 2.274e+010 

 / ndf 2χ  38.86 / 42

p0        4.527e+008± 2.274e+010 

ALT: 90
AZ: 180
RA: 23.4086
DEC: 28.4571
shots: 10000

02.08.10 04-06-37.dat

I laser light passes a given layer twice

I transmission T =
√

p02
p01

= 80%

I ⇒ spatial extension and transmission 15 / 18
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I laser light passes a given layer twice

I transmission T =
√

p02
p01

= 80%

I ⇒ spatial extension and transmission 15 / 18



A new LIDAR system for the MAGIC telescopes

First measurements and their evaluation

How to correct the energy spectra

I determine location and light
extinction of a thin aerosol
or cloud layer

I extrapolate extinction to
Cherenkov spectrum (Mie
scattering roughly
wavelength independent)

I then either use large sets of
Monte Carlo simulations

I or directly apply to data if
possible

γ IACT camera

EAS image

EAS
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A new LIDAR system for the MAGIC telescopes

Conclusion

I still in testing phase

I need to avoid disturbing MAGIC measurements or the other
telescopes on the Roque de los Muchachos

I parallel operation during MAGIC observations has already
started
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A new LIDAR system for the MAGIC telescopes

Conclusion

Thanks for your attention!
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