Lab1.md

Lab 01: First look at Vivado

2024-08-23

Lab Goals

o Take asimple HDL design through synthesis, implementation and onto the development board, using

AMD Vivado

Starting Vivado and opening the project

Open a terminal window and launch vivado

vivado &

You will be then prompted with the launch screen.

Vivado 2024.1

File Flow Tools Window Help Q- Quick Access

AMDQ1
Vivado

ML Edition

Quick Start Recent Projects
hw

Create Project > !
hol

Open Project >

fdcieri/Downloads/Basys-

Open Hardware Manager >

Vivado Store >

Learning Center

Documentation and Tutorials »
Quick Take Videos >
What's New in 2024.1 >

Tcl Console

hw
Open Example Project > fhome/dcieri/Downloads/Ba:

project_1

project_1
Ta S kS fhomeldcieriWork/fpga-course-tumilabs/lab07/project_1
Manage IP >

Click on Open Project, and navigate to your home area, and open the

Go inside the folder, and open the Vivado project file

/

directory.

Lab1.md 2024-08-23

We are now in the Vivado design Environment

The left sidebar shows the Flow Navigator, which can be used to launch most of the flow steps. Some of the
options are grayed out, since they require some steps in the flow to be run beforehand, e.g. you cannot open
the synthesized design, before having run the synthesis.

The panel on the right shows the Project Summary. On the top, you can see the main settings of the project.
Check for example, that the Product Family is and that the Project Part is

Above the pad, you will see the current context of the project, which is .The
context affects the commands you can run, as we'll se later.

The left pad in the context shows the window. Sources are subdivided in four categories.

« Design Sources: these are the files actually used by Vivado to synthesise the design

o Constraints: these are the files that maps your source file to the actual pins of the FPGA.

e Simulation Sources: files used to simulate the design

o Utility Sources: any other file in the project, not belonging to the above category. E.g. a python script.

Expand the Design Sources folder, if not yet done.

You should see a hierarchical view of modules in our project, using the following syntax.

<Module Name> (<Architecture Name>) (<Filename>) (<No. of submodules>)

The top module of the design is highlighted in bold. In our case we have,
LED_Counter (Behavioral) (LED_Counter.vhd) (3)

IF you single click on this source file, you will see its properties pop up in the directly below panel (Source File
Properties).

Some of this properties are just file information (E.g. the location), but other are important for the project,

like the file type. For , we set a file type to , which is fine in this case. Please, note
that Vivado refers to the 93 version of VHDL when saying .To use , please change the file
type.

Now double-click on . This will open the file in an editor window on the right.

Lab1.md

2024-08-23

labo1 - [/home/dcieri/Downloads/Ba 3-GPIO-hw.xpr-2024.1/hw/labo1.xpr] - Vivado 2024.1 - o x
Ele Edit Flow Tools Window Layout View Help Q A Ready
=~ B [T I 34 ¥ Default Layout -
PROJECT MANAGER - |2b01 2 %
~ PROJECT MANAGER
Sources ? _ O X Projectsummary x| GPIO Demovhd x 200
¥ Settings
Q|=Z[s |+ & Jhome/dcieri/Downloads/Basys-3-GP10-hw.xpr-2024.1/hw/labil srcs/sources_1/imports/hdliGPIO_Demo.vhd x
Add Sources
v [Design Sources (2)
Language Templates N Q ¥ BB X 4 ®E QO &
> @ = GPIO_demo(Behavioral) (GPIO_Demo.vhd) (3)
: out STD_LOGIC_VECTOR (3 downto 0); Al
4 1P Catalog > @ Text(1) out STD_LOGIC VECTOR (3 downto 0);
» = Constraints (1) : out STD_LOGIC_VECTOR (3 downto 0);
out STD_LOGIC:
v IPINTEGRATOR > [Simulation Seurces (1) : out STD_LOGIC;
: inout STD_LOGIC:
Create Block Design > [Utility Sources inout STD_LOGIC
end GPIO_demo;
gr architecture Behavioral of GPIO_demo is
conponent UART TX_CTRL
~ SIMULATION 1 Port(
SEND : in std logic;
Run Simulation DATA : in std_logic_vector(7 downto 0);
in std_logic;
A out std Logic;
~ RTLANALYSIS UART_TX : out std_logic
P RunLinter end ({:mpnnent;
5 OpenElaborated Design conponent debouncer
Generic(
77 DEBNC, S : integer;
~ SYNTHESIS Hierarchy | Libraries Compile Order Port(PRI nteger)
> RunSynthesis SIGNAL_T : in std_logic_vector(4 downto 0):
s File Properti.) 17 in std logic;
> Opel ource File Properties ?-D00OX : out std_logic_vector(4 downto @)
:):
® G710 pemonhd @ end companents
v IMPLEMENTATION ~
) Enabled component vga_ctrl
» RunImplementation - in STD_LOGIC;
Location: /home /dcieri/Downloads/Basys-3-GPIO-hw.xpr-2024.1 /hwilab01.src out STD_LOGIC;
> OpenImplem out STD_LOGIC;
out STD_LOGIC_VECTOR (3 downto 0);
Type EHDEZ00S E out STD_LOGIC_VECTOR (3 downto 0):
- out STD_LOGIC_VECTOR (3 downto 0);
PROGRAM AND DEBUG Library l_defaultlib E e s
¥i Generate Bitstream size: 16.5 KB 1nout STD_LOGIC
» OpenHardware Manager Modified: Monday 06/17/24 02:40:22 PM
Copied to: <Project Directory=/1ab01 srcs/sources_1 fimports/hdl
Copied from: ihome/dcieri/Downloads/sre/dl/GPIO_Demovhd
Copied on: Monday 06/17/24 02:40:22 PM
Read-only: No
Encrypted: No v
Ii v
>
Tcl Console | Messages | Log | Reports | DesignRuns x z_00
Q = = + %
Name Constraints ~ Status WNS TNS WHS THS WBSS TPWS TotalPower FaledRoutes Methodology RQAScore QoRSuggestions LUT FF BRAM URAM DSP Start Elapsed Runstre
w - synth1(actve) constrs1 Notstarted Vivado
impl_1 constrs_1 Not started Vivado
impl_1_copy_1 constrs_1 Not started Vivado I
synth_1_copy_1 constrs_1 Notstarted Vivado <
< b3

The Vivado editor provides syntax highlighting and some other simple editor features.

The Example Design (An LED Counter)

The design we are using for the first two labs is a simple 4-bit binary counter, that can be setup to to count
up, down and be paused and reset.

The bits are then represented on the Basys3 board LD0-LD3

The functions are controlled by four buttons, that go high when pressed.

o BTC: Pause

« BTU: Up Counter

+ BTD: Down Counter
» BTR: Reset Counter

There is a counting mechanism implemented that increases the LED counters every second, since using the
system clock of the board (100 MHz) will be to fast for us to see any LED blinking.

RTL Analysis

Lab1.md 2024-08-23

Vivado allows you to compile your code before actually starting the synthesis and implementation flow. On
the left sidebar, click on Open Elaborated Design and click OK in the pop-up window.

You can then click on Schematic on the sidebar. It should open a block diagram scheme of our design. This is
useful a useful tool to check that our design is correctly interpreted by Vivado.

— , H = 7
L= I
Synthesis
Run now the synthesis, clicking on the command on the right.
You can follow the synthesis flow, in the window on the bottom. Once the synthesis is completed, a

pop-up window will appear.
Synthesis Completed - X

o Synthesis successfully completed.
Next

(") Run Implementation

() Open Synthesized Design

(®) View Reports

[_] Don't show this dialog again

Select and click

Lab1.md 2024-08-23

You are now in the Context as you can see from the top bar. Here you can see two

new tabs appearing on the right pad.

: This is the 1/O planning where you can see the pins of the FPGA and its configurations
: Here you can see the actual layout of the device.

Lab1.md 2024-08-23

Let's have a look at the layout. The six blocks (X0Y0->X1Y2) are the six clock regions of the FPGA. The
components on the FPGAs are painted in different colors.

¢ In blue, you have the logic slices.

e The green columns are DSP slices.

» Red are block RAMs.

« Inorange are the clock resources.

« The colored blocks on the sides of the devices are the chip I/O.

You can click on any area to see its properties (in the left box), and zoom in to select individual blocks.

There is now another pad in the window showing the . This shows the nets and leaf cells in your
design. You can expand each category and click on individual objects to see its property.

Clicking on the object, will also highlight it in the device view, if placed. Since implementation hasn't been
run yet, no object has been placed.

Lab1.md

2024-08-23

Metlist
= 4
" LED_Counter
~ Mets (169)
> I cli div(32)
» [datal(31)
> ol leds (4)
» I leds OBUF(4)

<const0=

L

<constl=
clk
clk_ div[311.. 2 n0

clk_div[31_4 n_0

clk_div[311._5_n0

I
ol
I
I
I
I oclk_div[31._6_n_0
I
I
I
I
I

clk_div[31_7_n0

clk_div[311._8_n_0

clk_div[311.9n0

clk_div[311_10_n_0
clk_div_reg[4]_i_2_n 0

[clk_div_reg[4]_i_2_n 2

[cli_div_reg[4]_i_2_n_1

[rlle A ranldl i ? 1 2

?

— 0 a X

On the left panel, you can see the device constraints. Here, you can see which /O bank on the device has

constraints to the actual device pin.

Device Constraints ? 0 a X
Q T & = o

+~ Internal YREF

0.6V

0.675V

0.75V

0.9v

% L/OBank14
% /O Bank 16
% L/O Bank 34
% I/O Bank 35

Drop /O banks on voltages or the "NONE" folder to
set/unset Internal VREF.

Lab1.md 2024-08-23

If you click for example on , you should see the window opening in
the directly below pad. Here you should see the names of the port of your design, connected their relative
pins. You can click on the button, on the top right of the window, to have a better look.
1/0 Bank Properties 7 0 a X
/O Bank 14 ‘= o
Name Av.. 1 Prohibit Ports 1/0 Std Dir
% E19 0 Il leds[1] w LVCMOS33* - Output ™
o ou1g 0 Il leds[2] w LVCMOS33* » Output
V19 0 Il leds[3] w LVCMOS33* » Output
nT17 0 Il reset v LVCMOS33* ~ Input
T8 0 Il count_up v LVCMOS33* ~ Input
U7 0 Il count_down v LVCMOS33* ~ Input
o U18 0 Il count_pause v LVCMOS33* ~ Input
o U6 0 Il leds[0] w LVCMOS33* » Output
o A7]
K12]
K13]
W12]
o113]
oomM12]
ooM17]
o R17]
1132 f bl
R 2
General Properties Port Summary Package Pins 1/O Ports Sites 4 p =

Click now on Report Utilization in the sidebar. This will create a estimate report of the resources that our

design will use on the FPGA. You can also click on the percentage icon % , to have get a relative usage with
respect to the available resources on the device.

Tcl Console | Messages | Log | Reports | Design Runs | Utilization x Package Pins | 170 Ports 2?2 _ 00
Q = £ 4 Q T £ % Hierarchy o
»
Hierarchy & - "| Slice LUTs Slice Registers Bonded10B BUFGCTRL
Summary ame (20800 (41600 (106) (32)
« Slice Logic LED_Counter 32 42 9 1
+ Slice LUTS (<1%)
LUT as Logic (<1%)
~ Slice Registers (<1%)
Register as Flip Flop (<1%)
Memorv v
............................ I L e oo nm oo mmmn e mmm e m e e o o e m e o e e m e = e e e
utilization_1
V7 (I0B_X1Y11) User 10 1/0 Bank 34
Once you finished exploring, close the context, clicking on the symbol on the blue

bar. You should get a warning message. Just click OK to confirm.

Implementation

Lab1.md 2024-08-23

Run now the implementation by clicking on on the sidebar. Similarly to the

synthesis, you can follow the progress in the log on the bottom panel.

Once it completes, you'll receive another pop-up message.

Open now the Implemented Design, and go to the tab.
To show the routing click on the Icon
Device
- @ o ¥ ¥ ¢ |# k@ o L

; Net: clk_div_reg_n_0_[28]
[E Type:SIGNAL
Route status: Fully routed

B
|
L

Now you can select a leaf cell in the window, and you should see where it has been placed on the
device.
Select the Icon , and select a leaf cell in the netlist. You should now see the

inside of the slice where the leaf cell has been stored.

Lab1.md 2024-08-23

Device

- a a = oEep @ o o

elk_cR[11Li1

In this view, we use the following color scheme (which is user-configurable)

« Grey: not used
e Cyan: Placed leaf cell
e Green: Placed net.

You can finally run the , to see what resources are actually used by the implemented
design. Do you see differences with respect to the Report obtained in the synthesized design?

Close now the implemented Design context window.

Bistream Generation

Generate the bitstream, by clicking on on the left sidebar. Again, once it completes,
you will see a pop-up window.

Select and click OK.

Hardware Manager

The hardware manager allows us to program the FPGA on our Basys-3 board. First of all connect the board to
your laptop, using the provided microUSB cable, if not yet done. Switch on the board, using the POWER
switch on the top left corner of the board.

Lab1.md

The board contains a default firmware which is loaded on the FPGA, that exercises most of the I/Os. We
want now to load our design.

In the hardware manager, click on on the left sidebar. Since we have just one board
connected, it is enough to click on auto-connect.

If everything went well you should see the board appearing in the panel.

labo1 - [/home/dcieri/work /fpga-course-tum/labs/labo1/labo1.xpr] - Vivado 2024.1 - @ @&
Ele Edit Flow Tools Reports Window Layeut View Help A write_bitstream Complete /'
= - | L - Dashboard Default Layout v
Flow Navigator ERER A HARDWARE MANAGER - localhost/xilinx tcf/Digilent/210183B81E8EA ? X
~ PROJECT MANAGER @ There are no debug cores. Program device Refresh device
£F settings
Hardware ?2_00X
Add Sources - .
Q = = o
Language Templates
Name Status
% IP Catalog i localhost Connected
~ B¢ xilinx tcf/Digilent/210183B81ESE Open
~ IPINTEGRATOR « @ xc7a35L0 Programmed
Create Block Design TE XADC (System Monito
v SIMULATION
Run Simulation
v RTLANALYSIS
P RunLinter
> OpenElaborated Design
v SYNTHESIS < >
P RunSynthesis
Properties 200X
» OpenSynthesized Design
-3
v IMPLEMENTATION
» RunImplementation
> OpenlImplemented Design
~ PROGRAM AND DEBUG
¥ Generate Bitstream
 Open Hardware Manager
Open Target
Program Device
Add Configuration Memery Devi
TclConsole x Messages | Serial I/O Links | Serial I/O Scans 2_00
Q T 2 Il B E@
o apen_hw_target A,
1 44-466] Opening hw_target localhost:3121/xilinx_tcf/Digilent/210183BE1EBEA
t_propert RAM. FILE {/home/dcieri/Work /fpga-course-tun/labs/Tab0l/1ab0l. runs/inpl_1/LED_Counter.bit} [get_hw_devices xc7a3st_o]
current_hw w_devices xc7a35t_0l
refresh_hw_device -update_hw_probes false [lindex [get_hw_devices xc7a35t_0] 0]
INFO: [Labtools 27-1434] Device xc7a35t (JTAG device index = 0) is programmed with a design that has no supported debug core(s) in it.
! ~
< >

2024-08-23

Here you can see already some information on the board, like its ID and the part number of the FPGA, which
is the same as in our design.

The FPGA contains also an XADC system monitor, which monitors the temperature on the device. If you
double-click on , @ window should pop-up asking to create a . Leave the default and
click OK.

Lab1.md 2024-08-23

Mew Dashboard - m] »

Specify the name and contents for a new dashboard.
Pn

Mame: |dashboard_1

Contents
Q| | &

w XC7a351.0
¥ADC (Systemn Monitor)

You should now see the temperature on the board as a function of time.

Lab1.md 2024-08-23

dashboard_1
XADC (xc7a35t_0)
g+ a a
g W Temp 36.2°C
g
v
g
E
2
13:40:30 13:40:45 13:41:00
Time (HH:MM:55)
Let's program now our FPGA, clicking on on the sidebar. It should select automatically the

bistream we just generated. Keep the default values and click

opticnally select a debug probes file that corresponds to the debug cores contained in the

Select a bitstream programming file and download it to your hardware device. You can
bitstream programming file.

Bitstream file: ork/fpga-course-tum/labs/1ab01/1ab01 . runs/impl_1/LED_Counter.bit

Debug probes file:

+'| Enable end of startup check

iy
[
\? Program Cancel

Lab1.md 2024-08-23

You should see now on the board Led 0 to 3 going up and down following the counter we implemented. You
can push the buttons, to try the other feature of our design.

