
Lab02.md 2024-08-23

 /

Lab 02: Simulating with Vivado

In this lab, we use a simple 4-bit adder design, to have a �rst look at simulation in Vivado.

Lab Goals

Run the vivado simulation

Run the Vivado Waveform viewer

Adding breakpoints

The design

Port Direction Width

A IN 4

B IN 4

RESULT OUT 5

ENABLE IN 1

The design takes as input two signals A and B and sums them in the RESULT signal, if the ENABLE port is set

high. Otherwise, it returns zero.

Test bench

The provided test bench instantiates the adder and stimulates its inputs.

1. Starting the Exercise

a. Create the Vivado project

Open a new terminal and go the the lab02 folder.

cd ~/labs/lab02/

Open Vivado and click on Create Project

vivado &

Lab02.md 2024-08-23

 /

Follow the Wizard to create the project using the following information.

Project Name:

Project name: adder_prj

Project Location: ~/labs/lab02/

Create project subdirectory: Yes\

Project Type

RTL Project

Add Sources

Click on Add Files and select ~/labs/lab02/src/adder.vhd

Add Constraints (skip)

Default Part

Click on Boards, and select Basys3 (use the search function)

b. Add Simulation Sources

Click on Add Sources on the left sidebar, and select Add or create simulation sources in the pop-

up window.

Lab02.md 2024-08-23

 /

Click on Add Files and select ~/labs/lab02/src/tb_adder.vhd. Click on Finish.

You should now see in the Sources panel, in the Simulation Sources the adder_tb testbench.

Lab02.md 2024-08-23

 /

Now right click on Run Simulation on the sidebar and select Simulation Settings.

Lab02.md 2024-08-23

 /

In the settings window, set the simulator language to VHDL and go to the Simulation tab in the bottom

panel. Set the simulation runtime xsim.simulate.runtime to 100ns. Click OK to save the settings.

Click now on Run Simulation -> Run Behavioural Simulation.

This compiles the code using the vivado simulation compilar (xelab) and launches the simulation using the

Vivado simulator (xsim).

This opens a new Vivado context (Simulation), with new panels (Scope, Objects and Waveform). On the

bottom panel, you have the Tcl console, where you can read the commands actually executed by Vivado (in

blue) and their ouput (in black).

Lab02.md 2024-08-23

 /

c. Exploring the waveform

The waveform window shows the evolution of the signals as a function of the simulation time.

Click on the three zoom buttons (zoom in, out and �t) and see how the view changes.

Lab02.md 2024-08-23

 /

Then select the A_tb signal and click on the previous and next transitions buttons, to see how the time

cursor moves.

If you select multiple signals, the cursor will move to any transitions of them.

You can also add markers to the waveform, to mark certain points in the simulation.

Add two Markers, one at 10 ns and one at 50 ns.

Go now to time 0, by clicking on the corresponding icon. You can click on the Next Marker icon, to jump from

one Marker to the other. Try also to jump back to the �rst marker from the second.

Delete all Markers click, either by selecting individually and using the Delete key, or clicking on Delete All

marker icon.

Add new signals to waveworm viewer

By default, Vivado shows only the signals of the top level testbench tb_adder. Let's add some other

signals.

First add a divider panel in the window by right clicking in the wave window and selecting new divider.

Call it TB signals and move it to the top of the window. Create now a new divider and call it UUT

signals.

In the scope panel select uut. In the Objects panel, you should now see the internal signals of the adder

module. Select all of them, right click and Add to Wave Window.

By default, Vivado prints the value of vector signals in hex format. You can however change this to Signed,

Unsigned decimals or binary as well.

Select the A, B and RESULT signals in the wave form, right click and select Radix->Unsigned Decimals.

Lab02.md 2024-08-23

 /

Grouping Signals

Signals can also be grouped to improve clarity. Select the A and B signals, right click and select New Group,

naming it Input Data.

e. Relaunching the simulation

Every time you make some change to your design or your testbench, you have to recompile the code.

Open the Sources Tab in the left panel and double click on the adder_tb. Change the last value of B_tb to

1010, and save.

Go back to the Waveform Untitled 1 and relaunch the simulation, by clicking on the corresponding icon

. Check the changes in the waveform.

f. Stepping through the code.

Sometimes is useful to run the simulation one step at the time to understand the behaviour of your design.

To do so, �rst reset the simulation clicking on the corresponding icon .

Click now on the step button , and see how the simulation executes di�erent part of the code. In the

bottom panel, you can also check the log in the Tcl console.

Also check how the waves are updated in the waveform viewer.

g. Adding break points

You can also add breakpoints to stop the simulation once reaching a certain line in the code. Let's add one

when the ENABLE signals goes from 0 to 1.

Open the tb_adder.vhd and go to line 34. To add a breakpoint at this line, simply click on the red circle at

the beginning of the line. The circle should become full.

Reset now the simulation and click on Run All . The simulation should now stop, once the

breakpoint is reached.

2. Launching the simulation from batch

To simulate your design you don't need to create a Vivado project. You can directly use xvhdl, xelab and

xsim commands.

Open a terminal and go the ~/labs/lab02 folder.

cd ~/labs/lab02

Now you need to compile the vhdl �les in the project using xvhdl

Lab02.md 2024-08-23

 /

xvhdl src/adder.vhd

xvhdl src/tb_adder.vhd

Now you can elaborate the design

xelab adder_tb -s adder_tb_sim --debug typical

The debug �ag enables speci�c debugging ability. When setted to typical, it enables line breakpoints,

waveform generation and signal driver value probing.

Finally you can run the simulation, either with the GUI.

xsim adder_tb_sim -gui

or in batch mode

xsim adder_tb_sim -R

Explore all the functionalities of the Vivado simulator commands by having a look at the documentation

page.

https://docs.amd.com/r/en-US/ug900-vivado-logic-simulation/Running-the-Vivado-Simulator-in-Batch-Mode

3. Simulating with GHDL

GHDL is an open-source VHDL simulator, which can be used alternatively to the Vivado Simulator. GHDL does

not provide an integrated waveform viewer, but it can produce waveform �les that can be then read using

other tools, like gtkwave.

Let's try to simulate our adder design using GHDL. Again open a new terminal and go the the lab02 folder.

cd ~/labs/lab02

First you need again to compile the VHDL �les.

ghdl -a -fsynopsys src/adder.vhd

ghdl -a -fsynopsys src/tb_adder.vhd

The -fsynopsys �ag is required, because the design is using some libraries GHDL needs to import.

Lab02.md 2024-08-23

 /

Now we have to elaborate the design.

ghdl -e -fsynopsys adder_tb

Finally, we can run the simulation

ghdl -r -fsynopsys adder_tb --wave=adder.ghw

The waveform is saved in the adder.ghw �le, that you can open now with gtkwave

gtkwave adder.ghw

Try now to explore the functionalities of gtkwave to analyse the results, by replicating some of the steps

done in Section 1.

Useful links:

GHDL documentation: https://ghdl.github.io/ghdl/index.html

GtkWave documentation: https://gtkwave.sourceforge.net/gtkwave.pdf

