INTRODUCTION TO FPGA PROGRAMMING

LESSON 02: VHDL FUNDAMENTALS

Dr. Davide Cieril

IMax-Planck-Institut fiir Physik, Munich

August 2024
MAX-PLANCK-INSTITUT
FUR PHYSIK apa:5 ¢




VHDL BASICS

VHDL is a strongly typed language (like C)
All objects must have a type and contain values of that type
Operations between objects must be of the same type

signal a : std_logic; -- std_logic is the type of the signal named a
signal b : integer; -- integer is the type of the signal named a

VHDL is case insensitive

-— These two lines are equivalent
signal a : std_logic;
SIGNAL A : STD_LOGIC;

Every VHDL statement ends with a semicolumn ;
Not sensitive to white spaces between statements
Empty lines ignored by compiler

Comments start with two dashes ——



VHDL BUILDING BLOCKS

library and package import data types and
functions from other files

The entity declares the digital block and defines the
interface with the outside world through port
statements.

The architectureimplements the functionality of
the block (inner working).

Multiplexer

RTL

| ) dout

library ieee ;
use ieee.std_logic_1164.all ;

entity multiplexer is

Port( a : in  STD_LOGIC;
b : in  STD_LOGIC;
S : in  STD_LOGIC;

dout : out STD_LOGIC);
end multiplexer;

architecture RTL of multiplexer
begin

out <= a when s = ’0’ else b;
end RTL;

is




VHDL TYPES

Built-in data types
integer: whole numbers
real: floating point numbers
time: used to specify delays - important in simulation
bit: scalar 1-bit signal (allowed values 0’ or ¢17)
bit_vector: multiple bits (buses) signals
boolean: boolean number (trueor false)
Built-in data-types are not enough to describe an actual circuit

E.g. b1t can not describe high-impedance state

Types can be extended using external libraries (IEEE or users)



LIBRARY STATEMENTS

To import definitions (types, functions, etc...) from a library, use the Library statement

library <library_name >;

In addition to entity and architectures, also packages can be stored in a library
Packages are used to define types or functions, that can be used in multiple part of the
design (more in another lecture)

The use statement is used to include a package from a library

use <library_name >.<package_name=>.all; -- "all" import all objects in the package




THE IEEE LIBRARY

One of the most common library used in VHDL designs
Despite being called IEEE is actually property of a company called Synopsys

Two main packages to import

library IEEE;
use IEEE.std_logic_1164.all; -- Extended logic types
use IEEE.numeric_std.all; -- Numeric data types and arithmetic functions




IEEE PACKAGES

Two extended VHDL logic types

std_log1c forsingle bit signals

std_logic_vector for multiple-bit signals (buses)

signed: vector representation of signed binary numbers

unsigned: vector representation of unsigned binary numbers
Additional logic values

“U’:unitialised

¢X?:unknown logic value

¢Z’:high-impedance

‘W’ :weak signal

“L’:weak low

“H’:weak high

¢=’:don’t care



BUSES AND ENDIANESS

The ordering of bits within a bus is fundamental to know the Most Significant Bit (MSB) and
Least Significant Bit (LSB)

Two options: big endian or little endian

signal be_signal : std_logic_vector(11l downto 0); -- Big Endian. (11) is the MSB
signal le_signal : std_logic_vector(0 to 11); -- Little Endian. (0) is the MSB

Tip: define always your vectors using downto so the binary value follow the two’s
complement representation (unsigned and signed).

MSB in a signed vector represents the minus.



https://en.wikipedia.org/wiki/Two's_complement
https://en.wikipedia.org/wiki/Two's_complement

STRAIGHT BINARY CODE

Binary strings interpreted as power of 2 integer numbers

Unsigned

Signed

"000";
"001";
"010";
"011";
"100";
"101";
"110";
"111";

~N oo 00 A W N H O

"000"
"001"
"010"
"011"
"100"
"101"
"110"
"111"




ENTITY AND ARCHITECTURE SYNTAX

Entity Architecture
entity MyModule is architecture rtl of MyModule is
-— optional generic list: More in another -— Declarative region local to the
lesson architecture (e.g. local signals)

generic (...);
-— port list
port (...);

begin

-- Implementation of the architecture
Functionalities)

end rtl;

(




PORTS

entity MyModule is

port (
-- <port_name> : <port mode> <port type>,
data_in : in std_logic; -- input port
data_out : out std_logic; -- output port
data_inout : inout std_logic -- bidirectional port

Common port modes: in,out and inout
Reading value from an out port is allowed only from VHDL-2008

N.B. No semicolumn (;) after the last port definition




SIGNAL DECLARATION

-- signal <signal_name> : <signal type> := <default_value>

signal A : std_logic := ’0’;

signal B : std_logic_vector (11 downto 0) := (others => ’0’); -- initialises all bits to
zero

Signals must be defined inside the entity’s architecture
Optionally declare an initial value

If no initial value, derived from type definition

Signal assignement is done with the <= operator, in the architecture implementation space

A <= B;




ADVANCED SIGNAL ASSIGNEMENT

Multiple Assignment!

A <= ’1’ after 5ns, ’'0’ after 15 ns;

Conditional Signal Assignment (implicit if)

A <= ’1’ when B="1" else ’0’;

Selected Signal Assignment (implicit case)

with sel select
A <= B when "00",

C when "01",
D when "10",
E when "11";

'after 5Snsisnota syntesisable statement, since the FPGA does not have a concept of time




CONCURRENT EXECUTION

Signal assignments are evaluated concurrently to each VHDL statement, when placed

outside of a process block (Sequential execution, more in another lesson)

Evaluated at the same time. The order in which they are written does not count

The following code snippets are equivalent.

architecture Behavioral of MyModule is architecture Behavioral of MyModule is
begin begin

S <= A; 3 += €3

B <= C; S <= A;
end Behavioral; end Behavioral;




MODULE INSTANTIATION

You can instantiate other HDL modules inside your architecture
Two options available:

Component Instantiation
Entity or Direct Instantiation

As an example, we want to instantiate the module mux inside our module MyModule.

entity mux is

Port( a : in  STD_LOGIC;
b : in  STD_LOGIC;
S : in  STD_LOGIC;

dout : out STD_LOGIC);
end mux;




COMPONENT INSTANTIATION

Declare the component in the declarative region of your architecture

Instantiate the component in the implementation region

-- Component Declaration
component <component name>
port (

<port 0 name> : <mode> <type >;

<port N name> : <mode> <type>
)

end component;

-- Component Instantiation
<instantiation name> : <component name>
port map (
<component port 0 name> => <parent
module signal >,

<component port N name> => <parent
module signal >

)3




COMPONENT INSTANTIATION EXAMPLE

entity MyModule is

Port( a, b, s : in STD_LOGIC;
dout : out STD_LOGIC);

end MyModule;

architecture RTL of MyModule is
-- Component Declaration
component mux is

Port( a : in  STD_LOGIC;
b : in  STD_LOGIC;
s : in  STD_LOGIC;

dout : out STD_LOGIC);
end component;
begin
-- Component Instantiation
mux_inst : mux

port map (
a = a,
b => b,
s = s,

dout => dout




ENTITY INSTANTIATION

Valid only if instantiating another VHDL module?

No declaration needed. Instantiate directly in the implementation region.

-- Entity Instantiation
<instantiation name> : <library_name >.<component name>
port map (

<entity port 0 name> => <parent module signal >,

<entity port N name> => <parent module signal>

IE

2instantiating a verilog module inside VHDL is possible only with the component syntax.




COMPONENT INSTANTIATION EXAMPLE

entity MyModule is

Port( a, b, s : in
dout

end MyModule;

STD_LOGIC;
out STD_LOGIC) ;

architecture RTL of MyModule is
begin
-- Entity Instantiation

-- work is the a special keyword in VHDL. It always refers to the same

-- i.e. mux and MyModule should be in the same library to function
mux_inst entity work.mux
port map (

a => a,

b => b,

s => s,

dout => dout

)
end RTL;

library as the current module.




LESSON 02 REVIEW

VHDL Fundamentals
VHDL basics
VHDL Built-in types
VHDL libraries and IEEE library
Entity and Architecture
Ports and Signals
Concurrent Execution

Hierarchical models



LAB 03: WIRING SWITCHES TO LEDS



