INTRODUCTION TO FPGA PROGRAMMING

LESSON 03: BOOLEAN ALGEBRA, LOOK-UP TABLES AND |IOBS

Dr. Davide Cieril

IMax-Planck-Institut fiir Physik, Munich

August 2024
MAX-PLANCK-INSTITUT
FUR PHYSIK Zas.0051£

BOOLEAN ALGEBRA

Digital logic hides the pitfalls of the analogue world by mapping the infinite set of real
values into two subsets corresponding to just 2 possible logic values: 1 and 0, or high and
low voltages.

With this assumption, we can use Boolean algebra to describe the operation of well
behaved 0s and 1sin a circuit

Instead of multiplication or division, Boolean algebra employs operations like AND, OR or
NOT.

LOGIC GATES

Logic Functions are represented in
digital systems with Logic gates.
Logic gates can be described with
truth tables
Atable listing all possible input and
output combinations for a boolean
algebra equation
Logic Gates are implemented in VHDL
using logic operators AND, OR, NOT,
NAND, NOR and XOR.

X NAND Y ()
XYy

~ 2 o0o0o|x

A <= X AND Y;
B <= X XOR Y;

X NAND Y

5 -0

4 2 o0o0|x

COMBINING GATES

Gates can be combined to create different boolean equations
VHDL follows the following logical operator order
AND > OR > NAND > NOR > XOR > XNOR

Round parenthesis can be used to force a different order

Q <= A AND B XOR A

Truth Table - A*B + A"

B

Input A | InputB QutputQ A
o] o] 1
o] 1 1

1 o} 0

1 1 1

THE LOOK-UP TABLE
On the FPGA, the are no physical logic gates that you can plug together to form a boolean
algebra equation
Look-Up Tables (LUTs) replace all functionalities of logic gates
LUTs are devices that can be configured to implement any truth table

They are defined by their number of inputs. E.g. LUT3

LUT3
s SR R

INIT[O]
INIT[1]
INIT[2]
INIT[3]
INIT[4]
INITIS]
INIT[6]
INIT[7]

NIT = Binary equivalent of the hexadecimal number assigned to the INIT attribute

- o o = = oo

ADAOAO_‘QH

ddddo:ccl

1

X832

XILINX 7-SERIES LUTS

On 7-series Xilinx/AMD FPGAs, LUT6 are
available

More info, here

LUTE
15
14 14| LUTS
] 13

12

1
1

4] LUTS
1 13

12

1

10

lo

X10343

https://docs.amd.com/r/en-US/ug953-vivado-7series-libraries/LUT6

PIN CONSTRAINTS

Logic signals in your design top module must be mapped to physical pins on the FPGA
This ensures correct signal routing and interface with the external world
If not specified, Vivado will place them randomly
It will fail, when creating a bitstream at Design Rule Check (DRC) because voltage standards
are not defined
Two options to constraint your design:

Using the I/O Planning graphic interface
With constraint files (. xdc for Vivado)

1/O PLANNING

To access the /0 Planning, open the RTL analysis
elaborated design

Then open Layout->I/0 Planning

The diagram shows the all the available pins on the
device
In the bottom panel, you can see the ports of your
design, and can assign to them to a particular pin
Don’t forget to define the IOSTANDARD
For our board, the standard is always LVCMOS33
(Low-Voltage CMOS 3.3V)

Tcl Console | Messages | Log | Reports | DesignRuns | PackagePins | /O Ports x 2 _0O0

Q = &£ = + A -

Name Direction Board PartPin Board PartInterface NegDiff Pair Package Fin Fixed Bank U0 Std Veco vref [

v % Allports (5 A
v B BTN(S IN v 14 LVCMOS33* ~ 3300

B BTN[4] IN uig v v 14 LVCMOS33* ~ 3300

XDC FILES

What the GUI actually does is writing the constraint in . xdc file
XDC files follow the Tcl semantic and contain list of commands to be executed by Vivado

Tcl (Tool Command Language) is a powerful interpreted language with a simple syntax

Most IDE including Vivado have a Tcl console. All Vivado commands are written in Tcl.
Tclis case-sensitive, on the contrary of VHDL

Both timing and physical constraint can be written in an XDC!

AMD Xilinx user guide on Using Constraint here

LYou can use also . tc file to specify your physical constraints. They follow the same syntax.

https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug903-vivado-using-constraints.pdf

SPECIFYING PHYSICAL CONSTRAINTS

Physical constraints are properties of any object in your design

Properties are set using the set_property command

Design interface are selected using the get_ports <port_name>command
Port name can also be a wildcard to set properties of multiple ports at the same time

You can also define variables inside the xdc with the set <variable_name>
<declaration> command

set_property syntax
set_property <property> <value> <object_list >

Example
set rst_port [get_ports {rst}]
Variable content is accessed with the $ symbol like in bash

set_property PACKAGE_PIN Al Srst_port

USEFUL XDC COMMANDS

Some of these commands need to have the design open (RTL, Synthesis or
Implementation)

Each command has an help message. <command_name> -h

get_ports: Get a list of ports in current design.
get_ports [<options>] [<port_name(s) >]

list_property: List all the properties for a particular object
list_property [options] <object>

list_property_value: Get a

If no argument, returns all ports

list of valid value for a specific property and object
list_property_value [options] <property> <object>

WHERE DO | GET INFORMATION ABOUT THE PIN MAPPING?

How the FPGA pins are connected into your board is

a choice of the board designer

The FPGA developer should refer to the board
schematic to check the pin assignment

Basys3 board schematics: Page 6

VGA G3 _ DI7

LEDG Ul

1c7A
BANK 14 |
10_0_14 10_L4P_T0_D04_14 J}:g%
1025 14 10 LANT0 D05 14 [al?——7-B—
10_LSP_T0_D06 14 (ot] —VoASL
10 15N T0_DO7_14 oo
10_L6N_T0_DO8_VREF 14 r
10_L7P_T1_D09_14 ~ S
10 L7N_T1_D10_14 | (ot Aol
10_L8P_TIDI1_14 feetS Aol
10 L8N_TI D12 14| (18 A D2
10L9P T1 DQS_14 (RS A
10_LON_T1_DQS_DI3_14| (52 s
10_L10P_T1_D14_14 | g o
10_LION_TI_DIS 14| (<
10_L11P_TI_SRCC_14 (aR11S
10_L1IN_TI_SRCC_14 | (il
101127 T1_MRCC_14 | (kT
10 L12NTI_MRCC_14| (aKIT
10_L13P_T2 MRCC_1¢ | (a5l
10_L13N_T2 MRCC_14| (b1
10_L14P_T2 SRCC_ 14| (b8 2
10 L14N_T2 SRCC_ 14| fakIS— 20
10_LT6N_T2 ATS_D31_14 | {2 — BT
10_LI7P T2 A14 D30 14 Ny
10 L17NT2_AI3_D29_14 | il o
BINC
SW1
SWo
¢ sw2
10_L20N T3 A07 D23 14 k] — 303
10_L21P_T3 DQS_ 14| [qe—2p>
10_L2IN_T3_DQS A06_D22_14 | (e i—Z72
10_1.29P_T3 A0S D21_14 | aia——3e
10_L22N_T3_A04 D20_14 (it —2
10_L23P T3 A03 DI9_14 | o s——222
10_L23N_T3_A02 DI8_14| (ags—— 20
10_L24P T3 A1 DI7_14 | [1s——1E08
10 L24N_T3_A00_DI6 14| [yt D7

XC7A3ST-1ICPG236C

https://digilent.com/reference/_media/reference/programmable-logic/basys-3/basys-3-sch-public-rev-d.pdf

SETTING PIN CONSTRAINTS FOR BASYS3

We know have all the information to map the ports of our design to the physical pins on the
Basys3 board
For each port, we must define the PACKAGE_PIN and IOSTANDARD properties

Get the PACKAGE _PIN from the schematics
The TOSTANDARD for all Basys3 portsis LVCMOS33

Example
set_property PACKAGE_PIN Ul6 [get_ports {led}]
set_property IOSTANDARD LVCMOS33 [get_ports {led}]

LAB 04: WIRING SWITCHES TO LEDS

LAB 05: IMPLEMENT A FULL ADDER

LAB 06: HIERARCHICAL DESIGN (A RIPPLE CARRY ADDER
IMPLEMENTATION)

The figures in these slides are taken from:

- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved

- nandland.com

- docs.amd.com

