
INTRODUCTION TO FPGA PROGRAMMING

LESSON 03: BOOLEAN ALGEBRA, LOOK-UP TABLES AND IOBS

Dr. Davide Cieri1

1Max-Planck-Institut für Physik, Munich

August 2024

1 / 1

BOOLEAN ALGEBRA

• Digital logic hides the pitfalls of the analogue world by mapping the infinite set of real
values into two subsets corresponding to just 2 possible logic values: 1 and 0, or high and
low voltages.

• With this assumption, we can use Boolean algebra to describe the operation of well
behaved 0s and 1s in a circuit

• Instead of multiplication or division, Boolean algebra employs operations like AND, OR or
NOT.

2 / 1

LOGIC GATES
• Logic Functions are represented in

digital systems with Logic gates.
• Logic gates can be described with
truth tables

– A table listing all possible input and
output combinations for a boolean
algebra equation

• Logic Gates are implemented in VHDL
using logic operators AND, OR, NOT,
NAND, NOR and XOR.

A <= X AND Y ;
B <= X XOR Y ;

3 / 1

COMBINING GATES
• Gates can be combined to create different boolean equations
• VHDL follows the following logical operator order

– AND > OR > NAND > NOR > XOR > XNOR

• Round parenthesis can be used to force a different order

Q <= A AND B XOR A

4 / 1

THE LOOK-UP TABLE
• On the FPGA, the are no physical logic gates that you can plug together to form a boolean

algebra equation
• Look-Up Tables (LUTs) replace all functionalities of logic gates
• LUTs are devices that can be configured to implement any truth table
• They are defined by their number of inputs. E.g. LUT3

5 / 1

XILINX 7-SERIES LUTS

• On 7-series Xilinx/AMD FPGAs, LUT6 are
available

• More info, here

6 / 1

https://docs.amd.com/r/en-US/ug953-vivado-7series-libraries/LUT6

PIN CONSTRAINTS

• Logic signals in your design top module must be mapped to physical pins on the FPGA

• This ensures correct signal routing and interface with the external world
• If not specified, Vivado will place them randomly

– It will fail, when creating a bitstream at Design Rule Check (DRC) because voltage standards
are not defined

• Two options to constraint your design:
– Using the I/O Planning graphic interface
– With constraint files (.xdc for Vivado)

7 / 1

I/O PLANNING
• To access the I/O Planning, open the RTL analysis

elaborated design
– Then open Layout->I/O Planning

• The diagram shows the all the available pins on the
device

• In the bottom panel, you can see the ports of your
design, and can assign to them to a particular pin

– Don’t forget to define the IOSTANDARD
– For our board, the standard is always LVCMOS33

(Low-Voltage CMOS 3.3V)

8 / 1

XDC FILES

• What the GUI actually does is writing the constraint in .xdc file

• XDC files follow the Tcl semantic and contain list of commands to be executed by Vivado
• Tcl (Tool Command Language) is a powerful interpreted language with a simple syntax

– Most IDE including Vivado have a Tcl console. All Vivado commands are written in Tcl.
– Tcl is case-sensitive, on the contrary of VHDL

• Both timing and physical constraint can be written in an XDC1

• AMD Xilinx user guide on Using Constraint here

1You can use also .tcl file to specify your physical constraints. They follow the same syntax.
9 / 1

https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug903-vivado-using-constraints.pdf

SPECIFYING PHYSICAL CONSTRAINTS

• Physical constraints are properties of any object in your design

• Properties are set using the set_property command
• Design interface are selected using the get_ports <port_name> command

– Port name can also be a wildcard to set properties of multiple ports at the same time

• You can also define variables inside the xdcwith the set <variable_name>
<declaration> command

s e t _ p r o p e r t y s y n t a x
s e t _ p r o p e r t y < p r o p e r t y > < v a l u e > < o b j e c t _ l i s t >
Example
s e t r s t _ p o r t [g e t _ p o r t s { r s t }]
V a r i a b l e c o n t e n t i s a c c e s s e d w i t h t h e $ symbol l i k e i n bash
s e t _ p r o p e r t y PACKAGE_PIN A1 $ r s t _ p o r t

10 / 1

USEFUL XDC COMMANDS

• Some of these commands need to have the design open (RTL, Synthesis or
Implementation)

• Each command has an help message. <command_name> -h

g e t _ p o r t s : Get a l i s t o f p o r t s i n c u r r e n t d e s i g n . I f no a r g u m e n t , r e t u r n s a l l p o r t s
g e t _ p o r t s [< o p t i o n s >] [< port_name (s) >]
l i s t _ p r o p e r t y : L i s t a l l t h e p r o p e r t i e s f o r a p a r t i c u l a r o b j e c t
l i s t _ p r o p e r t y [o p t i o n s] < o b j e c t >
l i s t _ p r o p e r t y _ v a l u e : Get a l i s t o f v a l i d v a l u e f o r a s p e c i f i c p r o p e r t y and o b j e c t
l i s t _ p r o p e r t y _ v a l u e [o p t i o n s] < p r o p e r t y > < o b j e c t >

11 / 1

WHERE DO I GET INFORMATION ABOUT THE PIN MAPPING?

• How the FPGA pins are connected into your board is
a choice of the board designer

• The FPGA developer should refer to the board
schematic to check the pin assignment

• Basys3 board schematics: Page 6

12 / 1

https://digilent.com/reference/_media/reference/programmable-logic/basys-3/basys-3-sch-public-rev-d.pdf

SETTING PIN CONSTRAINTS FOR BASYS3

• We know have all the information to map the ports of our design to the physical pins on the
Basys3 board

• For each port, we must define the PACKAGE_PIN and IOSTANDARD properties
– Get the PACKAGE_PIN from the schematics
– The IOSTANDARD for all Basys3 ports is LVCMOS33

Example
s e t _ p r o p e r t y PACKAGE_PIN U16 [g e t _ p o r t s { l e d }]
s e t _ p r o p e r t y IOSTANDARD LVCMOS33 [g e t _ p o r t s { l e d }]

13 / 1

LAB 04: WIRING SWITCHES TO LEDS

14 / 1

LAB 05: IMPLEMENT A FULL ADDER

15 / 1

LAB 06: HIERARCHICAL DESIGN (A RIPPLE CARRY ADDER
IMPLEMENTATION)

16 / 1

The figures in these slides are taken from:
- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved
- nandland.com
- docs.amd.com

17 / 1

