Lab 5: Combinatorial Logic - Design a Full Adder

In this lab, we will design a simple Full Adder block, to test our knowledge of concurrent signal assignments, and simple VHDL operators.

A. Design A Full Adder

The port interface of the adder are:

Port	Direction	Туре	
А	IN	std_logic	
В	IN	std_logic	
Ci	IN	std_logic	
S	OUT	std_logic	
Со	OUT	std_logic	

The functionalities of the full adder are summarised in the following table

	Function	
S	A XOR B XOR Ci	

Co (A AND B) or (A AND Ci) or (B AND Ci)

Simulating the project

A testbench tb_fulladder.vhd is provided inside the sim/ folder. It initialises all inputs to zero, and explores all possible combinations. Finally, it compares the results against the expectation as in the following table.

Α	В	Ci	S	Со
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Exercise 1.

- 1. Open a terminal and go to 1. Go to ~/labs/lab05.
- 2. Open the source file src/fulladder.vhd, using kate or your favorite editor

kate src/fulladder.vhd &

- 3. Implement the functionalities as in the above truth table.
- 4. Run the provided simulation script to check that your design is working correctly

./run_sim.sh

To run the simulation in GUI mode launch

./run_sim.sh -g

Exercise 2. Add signals

- 1. Define a new std_logic signal TMP in the FullAdder Architecture
- 2. Implement the following functionalities using the new defined signal

	Function
TMP	A XOR B
S	TMP XOR Ci

Co (A AND B) or (TMP AND Ci)

3. Run again the simulation and check the results