INTRODUCTION TO FPGA PROGRAMMING

LESSON 04: SEQUENTIAL LOGIC AND FLIP-FLOPS

Dr. Davide Cieril

IMax-Planck-Institut fiir Physik, Munich

August 2024 MAX-PLANCK-INSTITUT
FUR PHYSIK ApDgzt




REMINDER: COMBINATIONAL AND SEQUENTIAL

A combinational circuit is one whose outputs depend only on the current inputs

A sequential circuit is one whose outputs depend on the current in inputs and on previous
outputs

On FPGAs sequential logic is achieved using flip-flops or registers



THE CLOCK SIGNAL

The Clock signal or just clock, is a digital signal that alternates between 0 and 1, with a fixed
frequency
Changes in clock signals are called edges

Rising edge: 0to 1

Falling edge: 1to 0

Duty Cycle: fraction of time a clock signal is high

One Clock
“Period”
1 [
0

TiMe  ——



CLOCKS IN AN FPGA

Clocks inside an FPGA drive all sequential logics

(Flip-Flops, RAMs, FIFOs, etc..)

FPGAs typically support multiple clock domains
E.g. different interfaces might require different
frequencies, more in another lesson

Clocks are generated externally to the FPGA and

input into special pin
Our Basys3 board has an oscillator chip generating a
100 MHz clock, input to pin W5

A dedicated routing logic is available to minimise

skew

DOooDooo0oooooo0o0

o
o
u]
a
a
Q
u]

=

pildll

ooooooo

uué;uuuuuug\:uuuu

oooooo0Ooo0o0O0O00O0Q

Clock signal from
outside world

Special clock
pin and pad

Clack tree

Flip-flops



BASIC TIMING CONSTRAINT

Your design should know the frequency of the clock you are running
As all other ports, clocks must be mapped to a physical pin and have a specific 10 standard

All this must be defined in the constraint XDC file

set_property PACKAGE_PIN W5 [get_ports CLK]
set_property IOSTANDARD LVCMOS33 [get_ports CLK]
create_clock -period 10.000 -name sys_clk_pin -waveform {0.000 5.000} -add [get_ports
CLK]
# create_clock syntax explanation
create_clock -period <clock period in ns> \
-name <a name for your clock> \
-waveform <optional, otherwise set a half-duty clock by default> \
-add <map the clock to a specific port>




FLIP-FLOPS

Flip flops are special circuits used to store state information
Several types of flip flops can be constructed

A good listis available here.

Most of FPGA vendors employs a D-type Flip-Flop (or data flip-flop)

Data

D

Clk Flip-Flop

Gated SR Flip-Flop

Inverter



https://en.wikipedia.org/wiki/Flip-flop_(electronics)

FLIP-FLOP BEHAVIOUR

The flip-flop checks the state of the input signal at each rising edge of the clock and set the
output (registering)

41 +2 43 +1 +2
clk 1 [ 1 | clk | L

D | o [ ___
Q [ a [ L




THE ACTUAL REALITY

On the FPGA, you can instantiate Flip-Flops with a clock-enable (CE) and reset signal

(synchronous or asynchronous)

Example, with asynchronous reset

FDRE C
T
— CE o _]
CE
—DPc
CLR




CONCURRENT STATEMENTS IN VHDL

The process statement is used in VHDL to define blocks to be evaluated sequentially
Statements inside a process are evaluated sequentially (like most programming languages)

Multiple process blocks are evaluated concurrently

<process_name> : process
begin
statement 1;
statement 2;

statement N;
end process <process_name >;




PROCESS SENSITIVITY LIST

A process can have a sensitivity list
List of signal to which te process is sensitive (for example a clock)

The process is executed only when there is a change to a signal in the sensitivity list

<process_name> : process(signalA, signalB)
begin

statement 1;

statement 2;

statement N;
end process <process_name >;




CONDITIONAL STATEMENTS - IF

if statement allows conditional execution inside a process

Condition should return a boolean
Allowed relational operators: Equal(=), Not Equal (/=), Less Than (<, Less Than or Equal to

(<=), Greater Than (>), Greater Than or Equal to (>=)

if <conditionl> then
<vhdl statement >;

end if;

if <conditionl> then
<vhdl statement 1>;

else
<vhdl statement 2>;

end if;

if <conditionl> then
<vhdl statement 1>;
elsif <condition2> then
<vhdl statement 2>;
else
<vhdl statement 3>;
end if;




CONDITIONAL STATEMENTS - CASE

case <signal> is
when <condition A> => <statement A>;
when <condition B> => <statement B>;
when others => <statement C>;

end case;

Similar to switch in C
Default option others is available

nullisavalid VHDL statement that can be used if no assignment is wanted




CONDITIONAL STATEMENTS - EXAMPLES

process(a,b,sel)
begin
if sel = 0’ then
y <= aj;
elsif sel = ’1’ then
y <= b;
else
null;
end if;

end process;

process(a,b,sel)
begin
case sel is
when ’0’ => y <= a;
when ’1’ =>y <= b;
when others => null;
end case;
end process;




EDGE DETECTION IN VHDL

The ieee.std_logic_1164.all package contains useful functions to detect signal
(and clock) edges
rising_edge(s) returns true,ifthereis arising edge on the signal s
falling_edge(s) returns true, if thereis a falling edge on the signal s

-— A D-Flip -Flop implementation
process(clk)
begin
if rising_edge(clk) then
Q <= D;
end if;
end process;




UNDERSTANDING SIGNAL ASSIGNMENTS IN VHDL PROCESSES

Statements within a VHDL process are executed sequentially.

However, signal assignments take effect only at the end of the process.
Risk: Overwriting earlier assignments within the same process.

Example: Flip-Flop driven by multiple inputs within a single clock cycle.

process(clk) is

begin
if rising_edge(clk) then
a <= b; -- Overwritten by later assignments
b <= c;
c <= a;
a <= c¢; -- This is the final assignment to ’a’
end if;

end process;




RESETS

Two types of resets can be defined.

Asynchronous Reset. Reset signal is not synchronous to the process clock.
Synchronous Reset. Reset signal is synchronous to the process clock.

-- D-Flip -Flop with Asynchronous Reset
process(clk, rst)

begin
if rst = 1’ then
Q <= ’07;
elsif rising_edge(clk) then
Q <= D;
end if;

end process;

-— D-Flip -Flop with Synchronous Reset

process(clk)
begin

if rising_edge(clk) then

if rst
Q <=
else
Q <=
end if;
end if;
end process;

= ’1’ then
07,

D;




CONSTANTS

As in common programmable languages, it is possible to define constants in VHDL

Improve code readability

If used in multiple places, only one change needed. Improved code maintenance

Can be definedin process, architecture or package blocks

architecture RTL of MyModule is

SIGNAL_WIDTH-1 downto 0);
begin

end architecture RTL;

constant SIGNAL_WIDTH : integer
signal my_signal : std_logic_vector(

process(clk)
constant reset_value
std_logic_vector := "1010";
begin
if rising_edge(clk) then
if mysignal = reset_value then
mysignal <= (others => ’'0’);
end if;
end if;
end process;




VARIABLES

Variables are VHDL objects local to a VHDL process

They cannot be used outside the process, where they are defined
They can be of any type
Value assignment using the : = symbol

Variables take immediately the value of the assignment

EXAMPLE_VAR : process(clk)

variable v_Count : integer := 0;
begin
if rising_edge(clk) then
v_Count := v_Count + 1;
r_Var_Copyl <= v_Count; -- r_Var_Copy2 updates to 5 the next clock cycle
if v_Count = 5 then
v_Count := 0;
end if;
r_Var_Copy2 <= v_Count; -- r_Var_Copy2 never gets to 5, since v_Count is immediately reset
end if;

end process EX_VAR;




WHILE STATEMENT
Syntax:

while <condition> loop
<sequential statements>
end loop;

Description:
Repeats a block of code as long as the condition is true.
The condition is evaluated before each iteration.
Used for loops where the number of iterations is not known beforehand.

Example:

process
variable i : integer := 0;
begin
while i < 10 loop
-- Perform some operation
ii= 0+ 1;
end loop;
end process;




FOR STATEMENT IN VHDL

Syntax:

for <loop_variable> in <range> loop
<sequential statements>
end loop;

Description:
Repeats a block of code a fixed number of times.
The loop variable automatically iterates over the specified range.
Used when the number of iterations is known beforehand.

Example:
process
begin
for i in 0 to 9 loop

-- Perform some operation
end loop;

end process;




LAB O7: COUNTERS AND DEBOUNCING



LAB 08: AN LED BLINKER



The figures in these slides are taken from:

- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved

- nandland.com

- docs.amd.com

- https://www.symmetryelectronics.com/

- https://www.edn.com/



