
Lab07.md 2024-08-20

 / 

Lab 7: Sequential Logic - Counters and Debouncing

In this lab, you will code a simple counter design, and use it later to debounce a button.

The input ports of the counter design are

Port Direction Type

clk in std_logic

rst in std_logic

count out integer

The rst signal is synchronous and active-high.

When rst is high, count is zero

When rst is low, count is increased by 1 at each positive edge of clk.

A testbench is provided to test the functionalities of the design.

Exercise

1. Code the Counter

Open the counter design with a �le editor,

cd ~/labs/lab07 

kate src/counter.vhd & 

and implement the design, following the comments inside the �le.

2. Run the simulation

Run the simulation to check your design

./run_sim.sh 

3. Debouncing a button using a counter



Lab07.md 2024-08-20

 / 

Any physical button or switch on a board is subjected to bouncing or rapid signal �uctuation. You would

expect a switch to behave like in the top half of the �gure, but it actually behaves like the bottom.

To avoid these glitches, we have to design a debouncing �lter. The module should check that the signal

coming from the button or switches is stable for a certain time, before being used in the rest of the logic.

Open the �le src/debouncer.vhd, and implement the design as follows.

Port Direction Type

btn in std_logic

�ltered_btn out std_logic

btn is the input un�ltered signal from a button or switch

filtered_btn, is the output debounced signal

Make use of the counter module you design earlier, to check the stability of btn signal. If btn is stable for

at least 1ms, then filter_btn takes its value, otherwise it keeps its old one. Every time filter_btn is

updated, counter needs to be reset.

Remember, that our board runs with a clock of 100 MHz.



Lab07.md 2024-08-20

 / 

Run the run_debounce_sim.sh, to check your design.

./run_debounce_sim.sh 


