
Lab09.md 2024-08-27

 / 

Lab 9: Design an Arithmetic Logic Unit (ALU)

Goal of the laboratory is the design of an arithmetic logic unit (ALU), that can perform several operations

depending on the input selection.

This are the ALU interfaces

Port Direction Type Length

A in std_logic_vector 12

B in std_logic_vector 12

opcode in std_logic_vector 5

result out std_logic_vector 12

zero out std_logic 1

neg out std_logic 1

over�ow out std_logic 1

The ALU should perform the following operations, depending on the input opcode.

opcode Operation

00000 result = A + B

00010 result = A

00011 result = A + 1

01000 result = Logical Shift Left (A)

01001 result = Arithmetic Shift Right (A)

10001 result = A AND B

10010 result = NOT(A) and B

On top of that it needs to calculate values for:

zero: Set to 1, if result is zero

neg: Set to 1, if result is negative

overflow: Set to 1, if the result requires an additional bit

A test bench is provided to test the implemented functionalities.

Exercise

1. Implement the ALU



Lab09.md 2024-08-27

 / 

Go to ~/labs/lab09/ and open src/alu.vhd with a text editor, and implement the module

functionalities, following the comments in the code.

kate src/alu.vhd & 

For the �rst exercise, consider A and B as unsigned numbers. Ignore the overflow output for the moment.

Once you are �nish, test your code by running the simulation.

./run_sim.sh 

2. Signed Operations

Add a std_logic port is_signed to the design, which signals wether the operation is between signed or

unsigned numbers.

Implement also these additional operations

opcode Operation

00001 result = A + B + 1

00101 result = A - B

00110 result = A - 1

01010 result = 0

01100 result = A * B

01101 result = A / B

01110 result = A mod B

N.B. The neg signal can now be high.

Check your code with the simulation script.

./run_sim2.sh 

3. Over�ow

Drive also the over�ow output. The overflow bit can be calculated as following,

Unsigned: Captures the 13th bit of the operation.

You need to resize the result of the operation

Signed:

If adding two positive numbers, it results in a negative number



Lab09.md 2024-08-27

 / 

E.g. 0100 + 0100 = 1000 (over�ow is high)

If adding two negative numbers, you get a positive

E.g. 1000 + 1000 = 0000 (over�ow is high)

Adding a positive and a negative number cannot result in an over�ow

Check the results with the simulation script

./run_sim3.vhd 


