INTRODUCTION TO FPGA PROGRAMMING

LESSON 06: VHDL SIMULATION

Dr. Davide Cieril

IMax-Planck-Institut fiir Physik, Munich

September 2024 MAX-PLANCK-INSTITUT %
FUR PHYSIK ApDgzt

VHDL SIMULATION

In the past labs, you already interfaced with some VHDL simulations

Simulation is the process of testing a VHDL module to ensure it behaves as expected

Simulation is fundamental to test your code, before actually implementing it on an FPGA
Once the FPGA is programmed, you can only change the input signals and check the outputs
No control on what is happening inside the FPGA!

Simulation or Verification is a fundamental part of the FPGA design workflow

Large companies have separated teams, only dedicated to the verification of RTL designs.

LFPGA vendors offer special modules to “spy” inside the FPGA, more in another lecture.

VHDL TESTBENCHES

+ Atestbenchis a VHDL code that applies stimuli to
the design/unit under test (DUT/UUT) and checks
the responses.

+ Itis not synthesized into hardware but used solely
for simulation purposes.

+ Helps automate the testing process.

Test Bench Architecture

Stimulus

Test
Vector

yv

y W 3

Unit Under
Test

Design Under
Test

VHDL SIMULATION FLOW

Create your VHDL
(DUT and TB)

|

Analyse
VHDL code

!

Elaborate
VHDL

|

Simulate
VHDL

}

Results

Write your code. Write your VHDL design and test-bench using
your favorite text editor.

Analyse. Compiles the code to find syntax errors, using a VHDL
simulator.

Elaborate. Advances the simulation time to 0. It can be
merged with the simulation stage

Simulate. Run the test bench for a specific period or until no
further activity.

Results. Check the results of your simulation with a waveform

viewer

BASIC TESTBENCH STRUCTURE

Purely behavioural code (no ports)
Instantiate the RTL design
Optionally, defines clocks

Stimulate the design

Optionally, check the responses from the design

Pass/Fail reports, timeouts

/ Testbench

// VHDL \\

EXAMPLE: A SIMPLE TESTBENCH

entity and_gate is
port(
A : in std_logic;
B : in std_logic;
Y : out std_logic
)5

end and_gate;

-- AND Gate Architecture
architecture behavior of and_gate is
begin

Y <= A and B;
end behavior;

entity tb

_and_gate is -- Testbench Entity (empty)

end tb_and_gate;
architecture test of tb_and_gate is -- Testbench Architecture
signal A, B, Y : std_logic;

begin
UUT: entity work.and_gate port map(A => A, B => B, Y => Y);
stim_proc: process -- Stimulus process
begin
A<= ’0’; B <= '0"; -- Test case 1
wait for 10 ns;
A<= ’0’; B <= "1"; —-— Test case 2
wait for 10 ns;
A <= ’1’; B <= ’0’; -- Test case 3
wait for 10 ns;
A<= "1’ B <= '1’; -- Test case 4

wait for 10 ns;

wait;
end process;

end test;

EXAMPLE: WAVEFORM

Simulation Waveforms show changes to signal values as function of simulation time

You can show both internal and interface signals

a
b

y
Time

DISCRETE EVENT SIMULATION

VHDL simulation is discrete
Multiple of the time resolution of the simulation software
Simulation advances from event to event
Every time a signal changes, it is an event

Event scheduling

VHDL is a parallel programming language, but CPUs work sequentially
Simulators schedules transactions to signals, when seeing an assignment in the code

Transactions are updated in the next delta cycle

Adelta cycle is a zero-time timestamp

DELTA CYCLE EXAMPLE

process
begin
A <= ’17; -- Event 1: A
updated to 1’
wait for 10 ns; -- Wait 10 ns
B <= A; -- Event 2: B
updated to 1’
C <= B; -- Event 3: C

remains 0’ initially , will
update in the next delta cycle
wait;
end process;

Initial State: A="0’,B="0,C="0’
Delta Cycle 1: Aupdated to ’1’

Delta Cycle 2: B updated to ’1’ (due to the wait
for 10 ns)

Delta Cycle 3: C updated to ’1’ (immediately
after B updates)

SIMULATING THE CLOCK SIGNAL

Very simple to define in your testbench
It can be free-running (loops indefinitely) or running for a finite number of clock cycles
Make uses of constants for better readability

architecture behavior of testbench is architecture behavior of testbench is
signal clk : std_logic := ’0’; signal clk : std_logic := ’07;
begin constant NCYCLES : integer := 100;
clk <= not clk after 5 ns; begin
end behavior; clk_proc : process
begin
for 1 in 0 to NCYCLES-1 loop
architecture behavior of testbench is clk <= not clk;
signal clk : std_logic := ’07; wait for 5 ns;
constant CLK_PERIOD : time := 10 ns; clk <= not clk;
begin wait for 5 ns;
clk <= not clk after CLK_PERIOD/2; end loop;
end behavior; wait;
end process;
end behavior;

WAIT STATEMENTS

Test benches use delayes to sequence inputs with wai t statements (not synthetisable)
wait for <time>.
E.g.wait for 10 ns;
wait on <signal>.Waiting for an event (change of state in a signal).
E.g.wait on clk.
wait until <boolean expression>. Waitfora specific signal value.
Eg.wait until clk = ’17;

SYNCHRONOUS RESET SIGNAL

To avoid potential race condition, set the rst signal always after the rising edge of the clock
in the testbench (one delta cycle later)

-- Example

stimulus: process

begin
wait until rising_edge(clk);
rst <= '17;
wait until rising_edge(clk);
wait until rising_edge(clk);
rst <= ’07;

end process;

STIMULATING DATA

In a simulated environment, the precise timing of signals is ideal and deterministic.
In actual hardware, there are propagation delays, clock skew, and other non-ideal factors
that make timing more variable.
Applying data changes at the clock edge might work in simulation but fail in real hardware
due to these variabilities.

Avoid applying data on the active clock edge

stimulus: process

begin
-- Avoid this
wait until rising_edge(clk);
data <= "010";
-- Better specifying a delay
wait until rising_edge(clk);
data <= "111" after 1 ns;
-- or applying on the inactive edge
wait until falling_edge(clk);
data <= "110";
wait;

end process;

PROCEDURES

A procedure is a subprogram that performs a specific task.

It can contain multiple sequential statements.
Procedures can have input, output, and inout parameters.

Allowed parameters are constants, variables, signals or files.

procedure <procedure name> <optional parameter list> is

<declarations >; —-- variable/constants/types local to the procedure
begin
<statements >; -- Sequential statements. Explicit return statement stops the
procedure

end procedure;

PROCEDURE EXAMPLES

Example without parameters

architecture behavior of testbench is
signal clk : std_logic := ’'07;
constant NCYCLES : integer := 100;

procedure run_clk is
constant CLK_PERIOD : time := 10 ns;
begin
clk <= not clk;
wait for CLK_PERIOD/2;
clk <= not clk;
wait for CLK_PERIOD/2;
end procedure;
begin
process
begin
for 1 in 0 to NCYCLES-1 loop
run_clk;
end loop;
wait;
end process;
end behavior;

architecture behavior of testbench is
signal a : integer := 0;

procedure write_data (value : in integer,

out integer) is
begin
data <= value;
wait for 10 ns;
end procedure;
begin
process
begin
write_data (5, a);
write_data (10, a);
write_data (12, a);
wait;
end process;
end behavior;

data

FUNCTION

A functionisa group of statements for computing a result of a certain data type
It can have only input parameters (allowed are constants, signals or files).

It must return a return statement

function <name> [<parameters>]
return <type> is

<declarations >
begin

<sequential statement>
return some_value; -- of type <type?
end function

)

PRINTING, WRITING AND ASSERTING

Checking the waveform is a direct way to debug your code. However:

Not easy to determine functional correctness from waveforms
Sampling a lot of signals in waveforms increase simulation runtime

It’s a manual work. Prone to human errors
For more complex designs, it is preferable to automatise the testbench
This can achieved by printing, writing and asserting signals

VHDL provides standard way thanks to the std. textio.all package

PRINTING SIGNAL VALUES IN VHDL

Printing information to the console in VHDL is done with the report function

-- Syntax

report <message_string> [severity <severity_level >];
-— Example

report "this is a message;

report "this is a serious message" severity warning;

Possible severity levels are: note (default), warning, error, failure
To report the value of a signal that is not a string use the ” image attribute
Strings can be concatenated using the & operator

-— Syntax

<type>’image(<signal_name >)

-- Example

report "unexpected value. i = " & integer ’image(i);

WRITING TO A FILE

Often is more convenient to write into a file

Done with thewriteline and write functions

-- procedure WRITE(L : inout LINE; VALUE : in integer; JUSTIFIED: in SIDE := right; FIELD: in WIDTH := 0);
use.textio.all;

process
file fp : text;
variable lp : line;
begin
file_open(fp, "filename.txt", write_mode);
write(lp, "a string"); -- write a string into line Ip
writeline (fp, lp); -- write the line into the file fp

end process;

writegetsalsostring, boolean, real, timeininput

owrite, hwrite, swrite, bwrite arealiasesto write octal, hexadecimal, string
and binary values

READING FROM A FILE

In a similar way, you can read from a file, maybe to read some data to be injected into your
DUT

-- procedure READ(L:inout LINE; VALUE: out integer);
use.textio.all;

process

file fp : text;
variable lp : line;
variable my_int : integer;
begin
file_open (fp, "filename.txt", read_mode);
readline (fp,lp); -- read the file into a line
read(lp, my_int); -- read the line and assign the value to my_int
dut_int <= my_int; -- Assign the dut_int signal to my_int

end process;

ASSERTING

In VHDL you can use the assert function, to check signal values against some expectation
Assertions can be concurrent or sequential

Concurrent defined in entities or architectures, continuously monitor the DUT
Sequentials are activated ony when reaching the statement

Assert returns always a boolean value. Default severity iserror

The values to assert can be extracted from a reference file

-- Syntax

[<label >:] assert <condition to check> [report <message>]

[severity <level >]
-- Example

assert a = ’0’ report "a is not 0" severity failure;

TERMINATING A SIMULATION

Report statements with failure severity stop the simulation
Stopping all stimuli, wait; at the end of the process
Using the stop and finish procedures

stop doesn’t actually finish the simulation, but it pauses it, and gets back to the Tcl shell
(kind of a breakpoint.)

use std.env.all; -- Include this package for the stop/finish procedures

report "This is the end, my only friend, the end." severity failure;

wait;

finish (<status=>); -- 0: print nothing, 1: print simulation time and location, 2: print
simtime, location and statistics

stop(<status >); -- Same as finish

TIMEOUT

Itis always a good idea to put a simulation timeout process, to avoid unexpected infinite

runs

timeout_proc : process

begin
wait for 10 ms; -- stops after 10ms
report "Reached the timeout of the simulation!" severity failure;

end process;

VHDL SIMULATORS

In this course, we are using two VHDL simulators
Vivado Simulator (Xsim). Integrated in Vivado. Manual here
GHDL: Open-source simulator https://ghdl.github.io/ghdl/
GHDL does not provide a waveform viewer, but can save the outputinto a
waveform file format (. vcd, . ghw)
GTKWave is an open-source wave viewer that can be used in combination with
GHDL

https://docs.amd.com/r/en-US/ug900-vivado-logic-simulation/Simulating-in-Batch-or-Scripted-Mode-in-Vivado-Simulator
https://ghdl.github.io/ghdl
https://gtkwave.sourceforge.net/

BASIC SIMULATION WITH XSIM AND GHDL

GHDL Example workflow
Vivado XSIM Example workflow
Analyse the required simulation files
Analyse the required simulation files with VHDL2008 (default 93)
with VHDL2008 (default 93) ghdl -a --std=08 dut.vhd
xvhdl --2008 dut.vhd ghdl -a --std=08 tb.vhd
xvhdl --2008 tb.vhd # Elaborate the design (tb is the name
Elaborate the design (tb is the name od the testbench module to run)
od the testbench module to run) ghdl -e tb
xelab tb -s my_sim --debug typical # Running the simulation (tb is the name
Running the simulation in the GUI od the testbench module to run)
Xxsim my_sim -gui ghdl -r --std=08 tb --wave=mywave.ghw
Running the simulation in batch mode # Optionally, open the waveform with
xsim my_sim -R gtkwave
gtkwave mywave.ghw &

LAB 10: TESTBENCH CODING

The figures in these slides are taken from:

- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved

- allaboutfpga.com

- nandland.com

- docs.amd.com

- https://www.symmetryelectronics.com/

- https://www.edn.com/

