INTRODUCTION TO FPGA PROGRAMMING

LESSON 07: STORING DATA ON FPGAS: RAMS AND FIFOs

Dr. Davide Cieril

IMax-Planck-Institut fiir Physik, Munich

September 2024 MAX-PLANCK-INSTITUT %
FUR PHYSIK ApDgzt

STORING DATA ON FPGAS

In previous lectures, we saw that Flip-Flops are a solution to store data on FPGA.

Good to store a small amount of data.
Ideal for holding state information and temporary data.

If you want to store more data, a RAM is a better choice

If very large data storage is needed, FPGAs can interface with external memory (DRAM,
SRAM, Flash, etc.)

WHAT’S A RAM?

Random-Access Memory (RAM) is a common block
that allows you to store data within an FPGA, and
read it back later
Random-Access means that data can be accessed in
any order
One clock you read at location 1, the next at
location 32
RAMs are typically single or dual-port

Single-port means in one clock cycle you can either
write or read to/from the RAM, but not together
Dual-port RAM have separate ports that allows you
to read and write at the same time

Vladdra
D dina
Mwea
Maddrb
M dinb

M web

RAM ON FPGAS

AMD FPGA logic resources are distributed in Configurable Logic Blocks (CLBs) and Slices
Logic resources can be assembled together to create small RAM blocks (Distributed RAM)

FPGAs typically have on-chip memory blocks that can be used of larger data storage (Block
RAM)

Both Distributed and Block RAM supports the implementation of single and dual port RAM
blocks

CLBS

CLBs are the main logic resources for implementing
both sequential and combinatorial circuits.

7-series CLBs contains two slices, independently
connected to the switch matrix for general routing

No direct connection between slices

Switch
Matrix

Slice(1)

K—T—))| slice(0)

SLICES

Each Logic Slice consists of
4 LUT6 (six inputs)
8 Flip-Flops
Wide-function multiplexer
Carry logic
Two types of Logic Slices available
SLICEL for logic arithmetic and ROM functions
SLICEM additionally can be configured to store data as distributed RAM or shift register
The Artix-7A35T has 3600 SLICEL and 1600 SLICEM
Maximum allowed Distributed RAM of 400Kb

Full description of Xilinx CLBs here

https://docs.amd.com/v/u/en-US/ug474_7Series_CLB

SLICEL AND SLICEM

cour

a5
SRt o
o= ST

o "sn

x>

D61 st

Reset Type.

&4 } i
=
e B
-
cor > fpam
.
ot T T P
: ! oo
.
of-om
.
of oo

SR>

cED>

=2

e D———F)

2o

Figure 2-4: Diagram of SLICEL

=S

Raset Type.

omux

851

-

Bl

o

]

=4

Figure 2-3: Diagram of SLICEM

SLICE CONTROL AND CLOCK SIGNALS

Clock, resets and enable signals are common to a slices
Elements with different control signals cannot be in the same slices

All elements in a slice react to the same clock edge

DISTRIBUTED RAM CONFIGURATION

e mawes
: D DPRAM32 :
unused ————————=DI1 :
. . unugeg ————
Slice-M can be configured as a synchronous RAM MaoBREE ZERIN e |
W CK) | et i
WCLK + LK
resource called distributed RAM weo | we i
! i
. ! o
Distributed RAMs have synchronous write and o I .
e o L CliLs, | 1
asynchronous read ports oI | ! s |
Possible configurations ! i
. ! DDPRAMSZ 1
Single Port - Common Address for read and write oatags | U
g SEURE P} H
(32 x 1 blt) E) w:f:” 05 : o3
| WE
Simple Dual Port - Separate port addresses for read | i
1 0DPRAM32 !
and write (64 X 6 blt) DATA(S] E on o6 *i—*n[s]
- A2t el !
Dual Port and Quad Port i wen - L
1 WE 1
! i

BLOCK RAM

Block RAMs are dedicated storage components built in the FPGA.
In contrast to distributed RAM, they can implement a true dual-port RAM

Both write and read port are synchronous and have independent clocks
Contention might be an issue (WRITE or READ first)

BRAM can be configured as 1 x 72 Kb or 2 x 36 Kb
Artix XC7A35Y has 1800 BRAM blocks available

RAMS IN VHDL

A RAM module is instantiated in VHDL by defining an array type

Vivado automatically choose the RAM type (distributed, block) depending on the size of the
array

RAM functionalities (single, dual, quad, ROM, FIFO) are defined with the architecture and
port definitions

AMD examples available here.

-- Distributed RAM instantiation

type distributed_ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal DRAM : distributed_ram_type;

-- Block RAM instantiation

type block_ram_type is array (1023 downto 0) of std_logic_vector (15 downto 0);
signal BRAM : block_ram_type;

https://docs.amd.com/r/en-US/ug901-vivado-synthesis/RAM-HDL-Coding-Guidelines

FORCE THE RAM TYPE

You can force the synthesiser to use a particular RAM type using the attribute property
We met attribute in the past lectures. They are additional information of a particular VHDL
type

You can define new attributes and attach them to any type

Some of these attributes are parsed by Vivado for the synthesis

A list of attributes that can be used in Xilinx FPGAs is available here.
To define the RAM type use the RAM_STYLE attribute

Allowed values are: distributed, block, registers, ultra, mixedandauto

attribute ram_style : string;
attribute ram_style of myram : signal is "distributed";

https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Synthesis-Attributes

EXAMPLE: SINGLE-PORT DISTRIBUTED RAM WITH ASYNCHRONOUS READ

https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Single-Port-RAM-with-

Asynchronous-Read-Coding-Example-VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;

entity rams_dist is

port(
clk : in std_logic;
we : in std_logic;
a : in std_logic_vector (5 downto 0);
di : in std_logic_vector(15 downto 0);

do : out std_logic_vector(15 downto 0)
)

end rams_dist;

architecture syn of rams_dist is
type ram_type is array (63 downto 0) of
std_logic_vector (15 downto 0);
signal RAM : ram_type;
begin
process (clk)
begin
if rising_edge(clk) then
if (we = ’1’) then
RAM(to_integer (unsigned(a))) <= di;
end if;
end if;
end process;

do <= RAM(to_integer (unsigned(a)));

end syn;

https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Single-Port-RAM-with-Asynchronous-Read-Coding-Example-VHDL
https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Single-Port-RAM-with-Asynchronous-Read-Coding-Example-VHDL

EXAMPLE: DUAL-PORT BRAM WITH SINGLE CLOCK

entity dual_port_bram is

Port (
data_in_a in STD_LOGIC_VECTOR(7 downto 0);
data_in_b in STD_LOGIC_VECTOR(7 downto 0);
rw_a in STD_LOGIC;
rw_b in STD_LOGIC;
clk in STD_LOGIC;
address_a in STD_LOGIC_VECTOR(9 downto 0);
address_b in STD_LOGIC_VECTOR(9 downto 0);

)5

data_out_a

data_out_b

out STD_LOGIC_VECTOR(7 downto 0)

out STD_LOGIC_VECTOR(7 downto 0)

end dual_port_bram;

architecture Behavioral of dual_port_ram is
type ram_type is array(0 to 1023) of std_logic_vector(7 downto 0);

signal RAM ram_type;
begin
input_a process (clk)
begin
if rising_edge(clk) then
if rw_a = ’1’ then
RAM(to_integer (unsigned (address_a))) <= data_in_a;
end if;
if rw_b = ’1’ then
RAM(to_integer (unsigned (address_b))) <= data_in_b;
end if;

data_out_b <= RAM(to_integer (unsigned(address_b)));
data_out_a <= RAM(to_integer (unsigned (address_a)));
end if;
end process;
end Behavioral;

ROMS
RAMs on FPGAs can also be configured as ROMs (Read-Only-Memory)

No write port
Content of the RAM must be initialised
Also normal RAMs can be initialised in the same way

type romtype is array(0 to 15) of std_logic_vector(7 downto 0);
signal memory_ram : romtype := (

x"oo", x"o1", X"02", X"03", X"04", X"05", X"06", X"07",

X"o08", X"09", X"OA", X"OB", X"oC", X"0OD", X"OE", X"OF");

begin
process (clk)
begin
if (rising_edge(clk)) then
data_out <= memory_ram(to_integer (unsigned(address)));
end if;
end process;
end Behavioral;

INITIALISE RAMS FROM FILE

In VHDL you can initialise the RAM content from an external file
External file can be of any type (. txt, .dat,etc...)
Each line describes the initial content at an address position in the RAM
Number of lines must be equal to RAM depth
RAM content can be expressed in hexadecimal or binary (not both together!)
No other content allowed in the file (no comments)

type RamType is array(0 to 7) of bit_vector(31 downto 0);
impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;
begin
for 1 in RamType’range loop
readline (RamfFile, RamFileLine);
read (RamFileLine, RAM(1));
end loop;
return RAM;
end function;
signal RAM : RamType := InitRamFromFile("myfile.txt");

FIFOS

The First-In, First Out (FIFO) is a common block to store data

Data comes in one entry at the time and gets read out from oldest to newest (no address
port required)

Don’t write to a full FIFO (overflow), don’t read from an empty FIFO (underflow)

fulland empty ports signal the status of the memory

Optional additional ports to check FIFO status (almost_full, almost_empty)

It can be implemented either as distributed or block RAMs

Write Side

Read Side

wr_en —
wr_data —

fifo,_full -a—|

FIFO

l—rd_en
= rd_data

- fifo_empty

entity FIFO is

port (
clk
reset
write_en
read_en
data_in
data_out
full
empty

)

end FIFO:

:in
:in
:in
:in
:in
: out
: out
: out

std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector (7 downto 0);
std_logic_vector (7 downto 0);
std_logic;
std_logic

EXAMPLE: FIFO

architecture Behavioral of FIFO is

write_ptr <= 0;

read_ptr <= 0;

count <= 0;

fifo_mem <= (others => (others =>

type fifo_array is array (15 downto 0) of
std_logic_vector (7 downto 0);

signal fifo_mem fifo_array := (others => (others
= 7))

signal write_ptr, read_ptr integer range 15
downto 0 := 0;

signal count integer range 16 downto 0 := 0;

begin
process(clk, reset)
begin

if reset = ’1’ then

0°));

elsif rising_edge(clk) then
-- Write operation
if write_en = ’1’ and full = ’0’ then
fifo_mem (write_ptr) <= data_in;
write_ptr <= write_ptr + 1;
count <= count + 1;
end if;
-- Read operation
if read_en = ’1’ and empty = ’0’ then
data_out <= fifo_mem (read_ptr);
read_ptr <= read_ptr + 1;
count <= count - 1;
end if;
end if;
end process;
-- Full and empty flags
full <= ’1’ when count = 16 else ’'0’;
empty <= 1’ when count = 0 else ’'0’;
end Behavioral;

LAB 11: TRIGONOMETRIC FUNCTION ON FPGAS

The figures in these slides are taken from:

- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved

- allaboutfpga.com

- nandland.com

- docs.amd.com

- https://www.symmetryelectronics.com/

- https://www.edn.com/

