
Lab11.md 2024-08-21

 /

Lab 11 - Trigonometric Functions on FPGAs

In this lab, we'll implement a module that returns the sine, cosine and tangent of a input variable X. These

are the interface port of the module.

Port Direction Type Width

CLK IN std_logic 1

X IN unsigned 8

SEL IN std_logic_vector 2

RESULT OUT signed 9

A testbench is provided to test your design.

Depending on the value of SEL, the module returns one of three implemented functions, according to the

following truth table.

SEL RESULT

00 0

01 COS(X)

10 SIN(X)

11 TAN(X)

Exercise

1. Deal with �oating point numbers.

The �rst step is to deal with the integer representation of X and RESULT. For that, we have to introduce the

concept of range and multipliers.

In our case X is an unsigned variable that can take values between 0 and 28-1. Since X, should represent an

angle between 0 to 2π, we can calculate the multiplication factor or multiplier in this way:

Xmult = (Xrange)/(Xmax
�oat - Xmin

�oat) = (28 - 1)/(2π-0) = 40.584510488

It is however convenient to choose a multiplier which is a power of 2, to ease the calculations on FPGAs. This

will impact the actual allowed range of X and also its granularity. In our case, the closest multiplier that is a

power of 2, that allows a full angle range is 32.

That means that X values will �oat between 0 and (28-1/32)=7.96875.

The digitised angles are then represented by the equation

X = X�oat * 32

Lab11.md 2024-08-21

 /

For the �rst exercise, calculate a reasonable multiplier for the sine, cosine and tangent functions. Use

multipliers that are power of 2.

2. De�ne the ROMs

Go to the ~/labs/lab11/ folder, and open the src/trigonometric.vhd �le with a text editor, and

implement the ROM following the comments in the �le and the following suggestions.

kate src/trigonometric.vhd

With the calculated multipliers, you can now create the ROMs that will store the values for the sine and

cosine. Each address in the ROM corresponds to a value of X, and its content is the corresponding sine or

cosine.

A python script is available in scripts/generate_vhdl_array.py, which can be used to generate the

initial content of the ROM. This is the usage of the script:

$> python3 scripts/generate_vhdl_array.py -h

usage: generate_vhdl_array.py [-h] [--type {sin,cos,tan}] input_mult

output_mult depth

Once you de�ned the ROMs, code the synchronous process that, depending on the value of SEL, reads the

corresponding ROM and assign the read value to the RESULT port.

3. Run the simulation

To check your code run the simulation script.

./run_sim.sh

Does your simulation pass? If it fails, check the log, and understand what the problem is.

The testbench is assuming a multiplier of 64 for all three trigonometric functions. If you chose di�erent

multipliers, open the sim/tb_trigo.vhd �le, and change lines 34-36 accordingly. Re-run the simulation

and verify that everything went well this time.

4. Initialise the memory from a �le

The python script should also have generated three .dat �les containing the ROM contents.

data/sin.dat

data/cos.dat

data/tan.dat

Lab11.md 2024-08-21

 /

De�ne an impure function in your module, which initialises the ROM from a �le. It should get as

argument the �lename as string.

N.B. The read procedure returns a std_logic_vector:

https://portal.cs.umbc.edu/help/VHDL/packages/std_logic_textio.vhd

Test your code again, by running the simulation

