Lab11.md 2024-08-21

Lab 11 - Trigonometric Functions on FPGAs

In this lab, we'll implement a module that returns the sine, cosine and tangent of a input variable X. These
are the interface port of the module.

Port Direction Type width
CLK IN std_logic 1
X IN unsigned 8
SEL IN std_logic_vector 2
RESULT OUT signed 9

A testbench is provided to test your design.

Depending on the value of SEL, the module returns one of three implemented functions, according to the
following truth table.

SEL RESULT

00 0

01 COS(X)

10 SIN(X)

11 TANX)
Exercise

1. Deal with floating point numbers.

The first step is to deal with the integer representation of X and RESULT. For that, we have to introduce the
concept of range and multipliers.

In our case X is an unsigned variable that can take values between 0 and 28-1. Since X, should represent an
angle between 0 to 2n, we can calculate the multiplication factor or multiplier in this way:

Xmute = Krange)/Kmax ©2¢ - Xmin ©29) = (28 - 1)/(2n-0) = 40.584510488

It is however convenient to choose a multiplier which is a power of 2, to ease the calculations on FPGAs. This
will impact the actual allowed range of x and also its granularity. In our case, the closest multiplier thatis a
power of 2, that allows a full angle range is 32.

That means that ~ values will float between 0 and (28-1/32)=7.96875.
The digitised angles are then represented by the equation

X = Xfloat * 32

Lab11.md 2024-08-21

For the first exercise, calculate a reasonable multiplier for the sine, cosine and tangent functions. Use
multipliers that are power of 2.

2. Define the ROMs

Go to the folder, and open the file with a text editor, and
implement the ROM following the comments in the file and the following suggestions.

kate src/trigonometric.vhd

With the calculated multipliers, you can now create the ROMs that will store the values for the sine and
cosine. Each address in the ROM corresponds to a value of ¢, and its content is the corresponding sine or
cosine.

A python script is available in , which can be used to generate the
initial content of the ROM. This is the usage of the script:

> python3 scripts/generate vhdl array.py -h
usage: generate vhdl array.py [-h] [--type {sin,cos,tan}] input mult
output mult depth

Once you defined the ROMs, code the synchronous process that, depending on the value of , reads the
corresponding ROM and assign the read value to the port.

3. Run the simulation

To check your code run the simulation script.

./run sim.sh

Does your simulation pass? If it fails, check the log, and understand what the problem is.

The testbench is assuming a multiplier of 64 for all three trigonometric functions. If you chose different
multipliers, open the file, and change lines 34-36 accordingly. Re-run the simulation
and verify that everything went well this time.

4. Initialise the memory from a file

The python script should also have generated three files containing the ROM contents.

data/sin.dat
data/cos.dat
data/tan.dat

Lab11.md 2024-08-21

Define an in your module, which initialises the ROM from a file. It should get as

argument the filename as string.

N.B. The procedure returns a :
https://portal.cs.umbc.edu/help/VHDL/packages/std _logic_textio.vhd

Test your code again, by running the simulation

