INTRODUCTION TO FPGA PROGRAMMING

LESSON 09: FINITE STATE MACHINES

Dr. Davide Cieril

IMax-Planck-Institut fiir Physik, Munich

August 2024
MAX-PLANCK-INSTITUT
FUR PHYSIK Zas.0051£

FINITE STATE MACHINES

A Finite State Machine (FSM) is a computational model used to design sequential logic
circuits.

Consists of a finite number of states, transitions between those states, and actions.
Moore FSM: Outputs depend only on the state

g‘te’l“ Cs“t"te“‘ Output Logic Outputs
ate State

Mealy FSM: Outputs depend on state and inputs

Inputs A Current | o,tput Logic Outputs.
Next State State State
Logic

Inputs
Next State
Logic

CLK

STATES, TRANSITIONS AND ACTIONS

ACTION:
RED Timer
Expires

ACTION: ACTION:
GREEN Timer Timer
Expires Expires

STATE: STATE: STATE:
GREEN RED

State: describe the status of the system.
Transition: The action of moving from one state to the other.
Action: The event triggering a transition

The same action can have different effect depending on the current state

MOORE VS MEALY

Moore

Advantages:
Simpler circuit, Faster Clock Frequency
No combinational input to output
Can have output encoded FSM states
Disadvantages:

Slower to react to input changes

(Cluraiz Output Logic Outputs
State

Inputs

Mealy
Advantages:
Faster to react to inputs

Disadvantages:

Combinational inputs to Outputs
More complex circuit (slower clock)

tevit Gl Output Logic Outputs

State — State

= |

Inputs
Next State
Logic

DEFINE FSM STATES IN VHDL

States can me encoded as constants or enumerated types
Enumerated types are more intuitive
Constant allows you to access each state vector bits

States and types must be defined in the declarative part of your architecture (before

begin)
-— Constant States
constant RED : std_logic_vector(l downto 0) := "00";
constant AMBER : std_logic_vector(l downto 0) := "01";
constant GREEN : std_logic_vector(l downto 0) := "10";

signal state : std_logic_vector (1l downto 0);
-- Enumerated type

type fsm_state is (RED, AMBER, GREEN);
signal state : fsm_state := RED;

STATE ENCODING IMPLEMENTATION

When using enumerated type, the synthesis tool will encode the states into binary vectors
Three main possibilities:
Binary Encoding (default): States are encoded in the minimum number of bits needed to
represent all states
One-hot Encoding: Each state is represented by one bit and the FSM is encoded so only one bit
set at any time.
Gray code Encoding: The states are encoded in such a way that any state transition only has
one bit change at a time.

You can force Vivado using one of three encoding using the attribute fsm_encoding (link
to documentation)

attribute fsm_encoding : string;
attribute fsm_encoding of state : signal is "one_hot";

https://docs.amd.com/r/en-US/ug901-vivado-synthesis/FSM_ENCODING
https://docs.amd.com/r/en-US/ug901-vivado-synthesis/FSM_ENCODING

BINARY ENCODING

States are assigned binary values.

Number of bits required: log, (Number of states).

Advantages: Minimal bit width, efficient use of state register.
Disadvantages: Complex state transition logic, higher risk of glitches.

Example:
For 4 states: SO="00",S1="01",S2="10",S3="11".

ONE-HOT ENCODING

Each state is represented by a single bit set to '1’, all others are ’0’.
Number of bits required = Number of states.

Advantages: Simple state transition logic, faster operation.
Disadvantages: Higher resource usage, less efficient for many states.

Example:
For 4 states: SO="0001",S1="0010",S2 ="0100", S3="1000".

GRAY ENCODING

Adjacent states differ by only one bit.
Number of bits required: log, (Number of states).
Advantages: Minimizes switching noise, ideal for asynchronous systems.

Disadvantages: More complex to implement, less common.

Example:
For 4 states: SO="00",S1="01",S2="11",S3="10".

IMPLEMENTING FSM IN VHDLS

Single-Process Implementation
Structure: Combines all logic (state
transitions, output, sequential) in one
process block.

Advantages:

Simpler design with fewer processes.

Easier to manage for small FSMs.

Disadvantages:

Difficult to debug due to mixed logic.

Lower readability for complex FSMs.

Multiple-Process Implementation
Structure: Separates FSM into distinct
processes:

State Register Process (sequential)

Next State Logic Process (combinational)

Output Logic Process (optional)
Advantages:

Higher clarity and modularity.

Easier to debug and modify.
Disadvantages:

More verbose code.
Requires careful synchronization.

SINGLE SEQUENTIAL PROCESS EXAMPLE

if rising_edge(clk) then
if reset = ’1’ then
state <= SO;
else
case state is
when SO0 =>
if input = ’1’ then
state <= S1;
end if;
output <= ’0’;
when S1 =>
state <= SO;
output <= ’'1°7;
when others =>
state <= SO;
end case;
end if;
end if;

MULTIPLE-PROCESS FSM EXAMPLE

—-- State register process
process (clk)

begin
if rising_edge(clk) then
if reset = ’1’ then
state <= SO;
else
state <= next_state;
end if;
end if;

end process;

N.B. The Output logic can be placed in any of the other two processes, depending if we

-- Next state logic process
process (state, input)
begin
case state is
when SO =>
if input = ’1’ then
next_state <= S1;
else
next_state <= SO;
end if;
when S1 =>
next_state <= SO;
when others =>
next_state <= SO;
end case;
end process;

-- Output logic process
process (state)
begin
case state is
when SO =>
output <= ’0’;
when S1 =>
output <= ’17;
when others =>
output <= ’0’;
end case;
end process;

want registered or combinatorial outputs.

STATE MACHINE BEST PRACTICES

One state machine per file: Improves readability and maintainability.
Use two processes: One clocked for state, one combinational for next state.
Meaningful state names: Improves code clarity.

Draw flow diagrams: Visualize FSM before coding.

LAB 12 IMPROVE THE TRAFFIC LIGHT

LAB 13: DESIGN A STOP WATCH

The figures in these slides are taken from:

- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved

- allaboutfpga.com

- nandland.com

- docs.amd.com

- https://www.symmetryelectronics.com/

- https://www.edn.com/

- Stephen A. Edwards, Columbia University, Fundamentals of Computer Systems, Spring 2012

- https://medium.com/well-red/state-machines-for-everyone-part-1-introduction-b7ac9aaf482e

