
Lab16.md 2024-08-22

 / 

Lab 16: Using IP Cores with Vivado

In this lab, we learn how to use IP cores in Vivado, and how to package your design into an IP.

We'll use Xilinx IPs and our user IP to design an adder module to be implemented in the Basys3 board.

The design has the following interface

Port Direction Width Type

A IN 8 std_logic_vector

B IN 8 std_logic_vector

RST IN 1 std_logic

CLK IN 1 std_logic

SUM OUT 8 std_logic_vector

The port A is constrained to the switches 0-7 on the board, while B to the switches 8-15. The RST is wired to

the central push button BTC. Finally, the SUM is connected to the LEDs 0-7.

The design should calculate the sum of A and B, according to the following truth table

RST SUM

0 A + B

1 0

The inputs A, B and RST shall be debounced before that we can use them.

Exercise 1. Package the debouncer module in a user IP

Go to ~/labs/lab16 and open Vivado.

Create a new Vivado project with the following settings.

Setting Value

Project

Name
debouncer_ip

Project

Type
RTL Project

Add

Sources

Add src/deb.vhd and src/multiple_debouncer.vhd to the project. Select VHDL as

target language

Default

Part
Select Boards -> Basys3



Lab16.md 2024-08-22

 / 

Open the MULT_Debouncer.vhd �le to get familiar with the design. The module instantiate a variable

number of debouncers equals to the parameter N_BUTTONS set in the VHDL generic. The debouncing time

DEBOUNCE_COUNT_MAX can also be con�gured.

Once, you �nished analysing the code, click on the toolbar Tools->Create And Package New IP, and

continue using the following settings.

Setting Value

Create Peripheral, Package IP or Package a Block

Design

Packaging Option: Package your current

project

Package your Current project IP location: ~/labs/lab16/UserIPs

Once you click on Finish, a new Vivado window should open. Here, you will be prompted with the IP

packager, where you can set information for your IP.



Lab16.md 2024-08-22

 / 

Have a look at the various Packaging Steps.

Compatibility: de�ne the list of FPGA family to which our IP will be compatible. Keep it as it is.

File Group: The �le which are used to package your IP. Keep it as it is.

Customization Parameters: Here you can see the parameters, that user can use to customise the IP.

They should coincide with the generics in the module.

Ports and Interfaces: The interface signals of your IPs. You should see a warning for the clk signal that

we can ignore.

Addressing and Memory: This de�nes eventual memory mapping in the IP. It's not relevant for our

design.

Customization GUI: Here you can have a look at the GUI page, that will appear when instantiating the

IP in a Vivado project.

Review and Package: Package your IP and close the project.

In the Customization GUI page, you might notice that the rst is shown as active low, which is the default for

Xilinx.

To �x this, go back to the Ports and Interfaces page, and double click on rst, under Clock and Reset Signals

Go to the Parameters tab, expand Auto-calculated in the left box, select POLARITY and click on the right

arrow. In the right box, you should now see it under Overridden. Select its Value cell, and type ACTIVE_HIGH.



Lab16.md 2024-08-22

 / 

Click OK, and refresh the IP page with the circular arrow in the toolbar . Now expand, the rst signal

row, left click on the rst port, and select Auto Infer single bit Interface -> Reset.

If you go back to the Customization GUI page, the reset port should look now correctly as active-high.



Lab16.md 2024-08-22

 / 

Go to Review and Package and click on Package IP. You can close the project once �nished. Also close the

other �rst project you created.

Exercise 2. Design the Adder

Open another Vivado window and create a new project with the following settings.

Setting Value

Project Name adder

Project Type RTL Project

Add Sources Add Files: src/top_adder.vhd. Select VHDL as target language.

Add Constraints Add Files: src/Basys3.xdc

Default Part Select Boards -> Basys3

In the De�ne Module window that pop-ups, you can already de�ne the ports as described above, or click OK

and modify the code manually.

Once you have de�ned the port interface, click on the IP Catalog on the left. Try to search for the IP, we just

packaged. You'll notice that Vivado cannot found it.

The reason is that we need to tell Vivado the location of our User repository. Click on Settings, and select

the IP->Repository page. Click on + and select the repository we just created UserIPs.



Lab16.md 2024-08-22

 / 

.

Click OK to close the window and save the settings. In the IP Catalog, you should now see a folder for the

User Repository UserIP. If you expand it, you will see our MULT_Debouncer_v1_0 IP.



Lab16.md 2024-08-22

 / 

.

Double click on our IP. We need to create two con�guration for our IP. The �rst one has N_BUTTONS=8 and

will be used to debounce the A and B inputs. A second one has just one button (N_BUTTONS=1) and will

debounce the rst signal.

Generate the two IPs, clicking on Generate both time. Give the IPs resonable names (e.g.

Switch_debouncer, Rst_debouncer).



Lab16.md 2024-08-22

 / 

Finally, we want to create an IP that performs the addition. Go back to the IP catalog and search for the

Adder/Subtracter block. Double click and customise it in this way.

Input type: Unsigned for both A and B

Input width: 8 for both A and B

Output width: 8

On the Control Tab, deactivate the Clock Enable

Click OK, and generate the IP.



Lab16.md 2024-08-22

 / 

Now go to the IP Sources tab in the Sources window. You should see the IPs, we just created. If you expand

them you will se the actual IP �les, including the Instantiation Template for VHDL (.vho) and Verilog (.veo).

Double click on VHDL Instantiation template for the adder IP.

You can see here the template to instantiate the IP in your code.

Using the templates instantiate now the IPs, in the top_adder.vhd �le, such that the output of the 8-bit

debouncer modules is connected to the inputs of the Adder IP. The S output of the IP, shall be then

connected to the output port SUM.

Once you �nished, click on Generate Bitstream to launch the Vivado �ow. If everything goes well, load the

�le into the Basys3 board, and test the functionalities by playing with the switches and the buttons.

Exercise 2. Design using Block Diagram

We'll try now to generate the same design, using the Vivado IP Integrator tool. Create a new Vivado project

with the following settings.

Setting Value

Project Name adder_bd



Lab16.md 2024-08-22

 / 

Setting Value

Project Type RTL Project

Add Sources Select VHDL as target language.

Add Constraints Add Files: src/Basys3.xdc

Default Part Select Boards -> Basys3

Click on Settings and add the user IP repository as before.

Click on Create Block Desing on the left sidebar. Give a reasonable name and click OK. You are now prompted

with the graphic interface of Vivado to create block designs.

Click on the plus button to add the debouncer IP. You should see our block appearing in the diagram. Since

we need three of them, select it, copy and paste it twice (CTRL-C CTRL-P) or right click Copy and right click in

an empty place and Paste.

You can then change the block names by selecting them and modify the name in the left box Block

Properties, General tab. Give them reasonable names as before. Double click on the module that you will use

to the debounce the reset signal, and change the N_BUTTONS to 1.



Lab16.md 2024-08-22

 / 

Finally, click again on plus to add the Adder/Subtracter IP block. Double click on the block, and set it up

as before. The diagram should now look like this.

As you notice, there are no connections or interface de�ned in the diagram at the moment.

Let's �rst add our interfaces. Right click on an empty space in the diagram, or type CTRL-K. You should see a

pop-up window, that will create our ports. Create the port of our module as described at the beginning of

the exercise, selecting the right type.



Lab16.md 2024-08-22

 / 

Once you created all the ports, start connecting them to the modules in the design, by click on them when

you see the pencil Icon, and select the corresponding ports.



Lab16.md 2024-08-22

 / 

Once you are �nished, you should have a block diagram similar to the following one.



Lab16.md 2024-08-22

 / 

Click on the Validate Design icon . You should get a warning that the RST input of the Reset Debouncer

block is not connected and will be grounded. That's �ne for us. Ignore and click OK. Save the Design (Ctrl-S or

the save icon) and close the Block Design context window.

Back to the Project Manager context, expand the Design Sources, you should see our block design there.

Right click on it, and select Generate HDL Wrapper. Keep the default and click OK.

Vivado should have now created the wrapper top module for our design. Open it and check that its port

correspond to the one in the constraint �le.

If everything looks �ne, generate the bitstream once again, load the �rmware onto the board, and play with

the switches to validate our design.


