INTRODUCTION TO FPGA PROGRAMMING

LESSON 11: TIMING ON FPGAS

Dr. Davide Cieri¹

¹Max-Planck-Institut für Physik, Munich

September 2024

PROPAGATION DELAYS

- Propagation delay is the time needed for a signal to travel from the a source to a destination component
- Sources of Propagation Delay:
 - Logic Delay: The delay introduced by the combinational logic (e.g., LUTs, multiplexers).
 - Routing Delay: The delay caused by the interconnects or wiring between logic elements.
- FPGA software include a *time analyser* tool which checks whether the design meets the timing

SETUP AND HOLD TIMES

- Signal transitions on FPGA are not instantaneous of course
- Data input to a Flip-Flop must be stable for a certain time to guarantee a valid output (Setup and Hold time)
 - The *Setup* time (t_{su}) is the time required for the input to be stable *before* a clock edge
 - The *Hold* time (t_h) is the minimum amount of time required for the input to be stable *after* the clock edge
- Summing the propagation delay t_p to the setup and hold times, one gets the smallest allowed clock period (or largest clock frequency) for a design

$$t_{clk}(min) = t_{su} + t_h + t_p$$

METASTABILITY

- A metastable state occurs when the output of flip-flop is unknown
- This occurs when setup or hold times are violated

FIX TIMING ERRORS

- Two main options to solve timing error inside an FPGA
 - Slow down clock frequency
 - Pipeline your logic, breaking it into stages (extra latency)

DOUBLE FLOPPING

- Other causes of metastability might can appear when
 - Sampling a signal asynchronous to the FPGA clock
 - Crossing Clock Domains
- In both cases, we can fix by "double-flopping" the data
- In the example, the output of the first flip-flop is metastable, when sampling on the first clock edge, but it will get stable when sampling on the second FF (second clock)

CLOCK DOMAIN CROSSING (CDC)

- In an FPGA design, you might have to work with multiple clock frequencies, especially when interfacing with external peripherals
 - E.g. HDMI running at 148.5 MHz and a camera running at 25.725 MHz
- Even if the clock relation is predictable, no guarantee that they are aligned (expect when using PLLs and MMCMs, next lesson)
- Moving from one domain to another requires a synchroniser:
 - Double Flip-Flop Synchroniser
 - Handshaking Synchroniser
 - FIFO Synchroniser

DOUBLE FLIP-FLOP SYNCHRONISER

- This Technique can be used if the following criteria is satisfied
 - The source clock domain is slower than destination clock domain
 - CDC is on a control signal (either single bit or multibit).
- It is enough to input the output data from the slower clock domain into a double FF synchroniser, running with the faster clock

HANDSHAKING SYNCHRONISER

- Guarantees sampling of correct data independently from source and destination clock relation
 - Mainly used to synchronise vector signals not changing continuously or very often
 - Requires additional latency for the handshake acknowledge/requests
 - Data must be stable for the entire period of handshaking

FIFO SYNCHRONISER

- We introduced the concept of FIFOs in lesson 7
 - We considered in that case a synchronous
 FIFO, read and write clocks are the same
 - An asynchronous FIFO (independent clocks) can be used to synchronise large amount of data between clock domains
- Fundamental to keep track of FIFO status (empty/full)
 - Requires internal CDC between read/write address (multi-bit)

- To deal with synchronisation issues between write and read addresses, let's introduce the gray code
- Gray Code is a way to order binary numbers, such that two successive values always differ in only one bit
- Read and Write address in the FIFO can be translated to gray code

Decimal	Binary	Gray Code				
0	0000	0000				
1	0001	0001				
2	0010	0011				
3	0011	0010				
4	0100	0110				
5	0101	0111				
6	0110	0101				
7	0111	0100				
8	1000	1100				

ASYNCHRONOUS FIFO SYNCHRONISER

- Translating the write/read address to gray code, we can deal with the comparison to check the FIFO status
 - A double-FF synchroniser is enough when moving read and write address between clock domains
 - Gray code ensures that only one bit is changed (avoiding multiple-bit metastability)

CLOCKING RESOURCES ON 7-SERIES AMD FPGA

- FPGA are divided in clock regions
- Each clock region has
 - 50 rows of Logic Slices
 - 50 IOs
 - 10 36k Block RAMs
 - 20 DSPs
- Clocks can be
 - Global
 - Regional
 - Regional plus adjacent

GLOBAL CLOCKS (BUFG)

- There are 32 global clock lines that can clock and provide control signals to all sequential elements in the device
 - 16 in the top and 16 in the bottom half
- Global clock buffers (BUFG) drive global clocks and are used to access global clock lines
- BUFG can only be driven by things in their own half
- Each clock region can support up to 12 of these clock lines (HROW)

- Each clock region has also access to 12 horizontal clock buffers (BUFH)
 - One for each HROW
- BUFH spans the full clock region and the horizontal adjacent region
- Preferred when logic spans one or two clock regions
- Same performance as BUFG

BUFR AND BUFIO

- Regional clock (BUFR)
 - Only available in a single clock region
 - 4 BUFRs per region
- I/O Clock Buffers (BUFIO)
 - Drives or can be driven by the I/O banks in a region
 - Cannot drive logic in the device
 - Ideal in source-synchronous applications where a forwarded clock is used to capture incoming data
 - 4 BUFIO per region

- Multi Region Clock Buffer (BUFMR)
 - Can drive BUFIO and BUFR in vertically adjacent regions
- Mostly used for multi-region I/O interfaces
- 2 BUFMRs per clock region

CLOCK PINS

- Four pair of clock pins per IO bank per clock region
 - Artix7 has one IO bank per region
- Differential Clocks
 - P (master) and N (slave)
 - Requires an Differential Signal Input Buffer (IBUFDS)
- Single Ended Clocks
 - Use P (master)
 - Other pin can be used for logic

CLOCK GENERATION INSIDE AN FPGA

- Each Clock Region includes a Clock Management Tile (CMT) that can be used to generate clocks from several clock sources
- Each CMT consists of:
 - One Phase Locked Loop (PLL)
 - One Mixed Mode Clock Manager (MMCM)
- MMCM and PLL can be instantiated from the IP catalogue
- PLL has a subset of the features of MMCM
- Maximum allowed input/output clock frequency for CMT is 800 MHz on Artix-7

TIMING ANALYSIS

- · Vivado analyses the timing conditions of your design, when running the implementation
- When transferring between sequential cells or ports, the data is:
 - Launched by one of the edges of the source clock, which is called the launch edge (t_l) Captured by one of the edges of the destination clock, which is called the capture edge (t_c) .
- Calculates the most pessimistic Setup, Hold and Pulse Width Slacks (S)

$$- S(Su) = t_c - t_l + t_{su} - \sigma(clk) + Delay(dest.clk) - Delay(src.clk) - Delay(data)$$

- $S(h) = t_c t_l t_h + \sigma(clk) + Delay(dest.clk) Delay(src.clk) Delay(data)$
- Pulse Width Slacks checks the actual clock pulse width and period

etup		Hold		Pulse Width		
Worst Negative Slack (WNS):	-1.349 ns	Worst Hold Slack (WHS):	0.130 ns	Worst Pulse Width Slack (WPWS):	0.345 ns	
Total Negative Slack (TNS):	-202.736 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 n	
Number of Failing Endpoints:	282	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	1182	Total Number of Endpoints:	1182	Total Number of Endpoints:	628	

Design Timing Summary

TIMING CONSTRAINTS IN VIVADO

- We already saw that timing constraint in Vivado are applied in .xdc files
- You can define there the following constraints
 - Clocks (Primary, Virtual, Generated, Automatically derived). Documentation
 - Input and Output Delays. Documentation
 - Timing Exceptions. Documentation
- Vivado includes a Constraint Wizard that checks the code for missing constraints (runs at synthesis or implementation stage)

DOING TIMING ANALYSIS

Design Timing Summary

- You can check the timing of your design after synthesis or implementation
 - If Total Negative Slack (TNS)
 - And Total Hold Slack (THS)
 - And Total Pulse Width Slack (TPWS)
 - ... are greater than 0, you have met timing.

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	-1.349 ns	Worst Hold Slack (WHS):	0.130 ns	Worst Pulse Width Slack (WPWS):	0.345 ns
Total Negative Slack (TNS):	-202.736 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 n
Number of Failing Endpoints:	282	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	1182	Total Number of Endpoints:	1182	Total Number of Endpoints:	628

CHECK THE FAILING PATHS

- In the timing report, you can check the failing paths in the design
- Even when timing is met, you can check for the near offenders
- Open the path for more info

👝 陆 🗄 💵 🥼 Tatra Clark Baths - out elk nin - Satur

£	~	34 V 1		Intra-crock i	ana ala'enchu anna									
1	Name	Slack 1	Levels	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock	Exception	Clock Uncertainty
	🖡 Path 21	-1.349	- 4	16	Inst_btn_debounry_reg[1][4]/C	Inst_btn_debounry_reg[1][4]/R	3.290	1.014	2.276	2.5	sys_clk_pin	sys_clk_pin		0.035
	ly Path 22	-1.349	4	16	Inst_btn_debounry_reg[1][4]/C	Inst_btn_debounry_reg[1][5]/R	3.290	1.014	2.276	2.5	sys_clk_pin	sys_clk_pin		0.035
	ly Path 23	-1.349	4	16	Inst_btn_debounry_reg[1][4]/C	Inst_btn_debounry_reg[1][6]/R	3.290	1.014	2.276	2.5	sys_clk_pin	sys_clk_pin		0.035
	ly Path 24	-1.349	4	16	Inst_btn_debounry_reg[1][4]/C	Inst_btn_debounry_reg[1][7]/R	3.290	1.014	2.276	2.5	sys_clk_pin	sys_clk_pin		0.035
Ľ	ly Path 25	-1.283	4	16	Inst_btn_debounry_reg[1][4]/C	Inst_btn_debounry_reg[1][12]/R	3.294	1.014	2.280	2.5	sys_clk_pin	sys_clk_pin		0.035
P	l Path 26	-1.283	4	16	Inst_btn_debounry_reg[1][4]/C	Inst_btn_debounry_reg[1][13]/R	3.294	1.014	2.280	2.5	sys_clk_pin	sys_clk_pin		0.035
	l Path 27	-1.283	4	16	Inst_btn_debounry_reg[1][4]/C	Inst_btn_debounry_reg[1][14]/R	3.294	1.014	2.280	2.5	sys_clk_pin	sys_clk_pin		0.035

PATH REPORT

ath Properties							? _ 🗆		
ath 21							÷ +		
Summary									
Name	🍾 Pat	th 21							
Slack	-1.349ns								
Source	D- Ins	Inst_btn_debounce/sig_cntrs_ary_reg(1)(4)/C (rising edge-triggered cell FDRE clocked by sys_clic_pin (rise@0.000ns fall@1.250ns period+2.500ns))							
Destination	D Ins	htst.btn.debounce/sig_cntrs_ary_reg(1)[4]/R (rising edge-triggered cell FDRE clocked by sys_clk_pin (rise@0.000ns fall@1.250ns period=2.500ns))							
Path Group	sys_dl	sys_clk_pin							
Path Type	Setup	(Max at Si	ow Proces	s Corner)					
Requirement	2.500	ns (sys_clk	pin rise@:	2.500ns - sys_clk_pin r	se@0.000ns)				
Data Path Delay	3.290	ns (logic 1)	014ns (30.	824%) route 2.276ns	(69.176%))				
Logic Levels	4 (LU)	T3=1 LUT4	-1 LUT5-1	LUT6=1)					
Clock Path Skew	0.000	05.							
Clock Unrtainty	0.035	05							
Source Clock Pat	•								
Delay Type		Incr (m) Path.	. Location	Netlist Resource(s)				
(clock sys_cln ris	e edge)	(r) 0.0	00 0.00	0					
		(r) 0.0	00.00	0 Site: W5	D CLK				
net (fo=0)		0.0	00.00	0	CLK				
IBUF (Prop ibuf 1 O)		(r) 1.4	58 1.45	8 Site: W5	CLK_IBUF_inst/O				
net (fo=1, routed)		1.9	67 3.42	5	CLK_IBUF				
BUFG (Prop bufg	1.01	(r) 0.0	96 3.52	1 Site: BUFTRL_X0	Y1 - CLK_IBUF_BUFG_inst/O				
net (fo=249, route	d)	1.9	54 5.08	5	Inst_btn_debounce/CLK_IBUF_BUFG				
FDRE				Site: SLICE_X14Y1	3 Inst_btn_debounce/sig_cntrs_ary_reg[1][4]/C				
Data Path									
2elay Type	1	Incr (ns)	Path	Location	Netlist Resource(s)				
DRE (Prop.fdre.)	<u>(</u>)	(r) 0.518	5.603	Site: SLICE_X14Y13	Inst_btn_debounce/sig_cntrs_ary_reg[1][4]/Q				
net (fo=2, routed)		0.678	6.282		Inst_btn_debounce/sig_cntrs_ary_reg[1]_1[4]				
UT4 (Prop lut4 1	01	(r) 0.124	6.406	Site: SLICE_X15Y13	Inst_btn_debounce/sig_out_reg[1]_i_5/0				
net (fo=1, routed)		0.299	6.704		Inst_btn_debounce/sig_out_reg[1]_j_5_n_0				
LUTS (Prop. lutS. I	<u>4.01</u>	(f) 0.124	6.828	Site: SLICE_X13Y12	Inst_btn_debounce/sig_out_reg[1]_i_4/0				
net (fo=1, routed)		0.154	6.982		Inst_btn_debounce/sig_out_reg[1]_i_4_n_0				
LUT6 (Prop lut6 1	5 01	(r) 0.124	7.106	Site: SLICE_X13Y12	Inst_btn_debounce/sig_out_reg[1]_i_2/0				
net (fo=2, routed)		0.502	7.608		Inst_btn_debounce/sig_out_reg[1]_i_2_n_0				
LUT3 (Prop lut3 1	0 01	(r) 0.124	7.732	Site: SLICE_X15Y13	Inst_btn_debounce/sig_cntrs_ary[1][0]_i_1/0				
net (fo=16, routed)	0.643	8.375		Inst_btn_debounce/sig_cntrs_ary[1][0]_i_1_n_0				
FDRE				Site: SLICE_X14Y13	Inst_btn_debounce/sig_cntrs_ary_reg[1][4]/R				
Arrivol Time			8.375						
Destination Cloc	k Path								

FIXING TIMING

- If you fail timing:
 - Understand where is the problem
 - Change your design (reduce clock speed, add pipeline stages)
 - Run implementation (if timing issue arises from synthesis)
 - Optimise implementation (More in another lesson)

PHYSICAL CONSTRAINTS

- Physical Constrains refers to Netlist, IO, placement, Routing and Configurations
- Reminder of general form

set_property <property> <value> <object_list>

Cells and nets are specified hierarchically

[get_cells top/mod1/mod2/net0]

• Consider using variables, if applying multiple property to a net/cell

set myCell [get_cells top/mod1/mod2/net0]
set_property cyclue value \\$myCell

MOST COMMON PHYSICAL CONSTRAINTS

- MARK_DEBUG (TRUE/FALSE): Used in hardware Test (future lecture)
- DONT_TOUCH (TRUE/FALSE): Tells Vivado to not optimise away or merge this particular net. Useful when duplicating signals
- IOSTANDARD: Set an I/O standard for an I/O port (e.g. LVCMOS33)
- LOC: Places a logical element from the netlist to a site on the device.
- Full list available here

LAB 17: TIMING CONSTRAINTS

LAB 18: GENERATING CLOCKS

The figures in these slides are taken from:

- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4. ©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved

- allaboutfpga.com
- nandland.com
- docs.amd.com
- https://www.symmetryelectronics.com/
- https://www.edn.com/
- Stephen A. Edwards, Columbia University, Fundamentals of Computer Systems, Spring 2012
- https://medium.com/well-red/state-machines-for-everyone-part-1-introduction-b7ac9aaf482e
- www.icdesigntips.com
- techdocs.altium.com
- anysilicon.com
- Yngve Hafting 2021, University of Oslo