INTRODUCTION TO FPGA PROGRAMMING

LESSON 11: TIMING ON FPGAS

Dr. Davide Cieril

IMax-Planck-Institut fiir Physik, Munich

September 2024 MAX-PLANCK-INSTITUT %
FUR PHYSIK ApDgzt




PROPAGATION DELAYS

Propagation delay is the time needed for a signal to travel from the a source to a
destination component
Sources of Propagation Delay:
Logic Delay: The delay introduced by the combinational logic (e.g., LUTs, multiplexers).
Routing Delay: The delay caused by the interconnects or wiring between logic elements.
FPGA software include a time analyser tool which checks whether the design meets the
timing

Propagation Delay
Logic &
> >
F Flip-Flop 1 F Flip-Flop 2
Clock




SETUP AND HOLD TIMES

Signal transitions on FPGA are not instantaneous of course
Data input to a Flip-Flop must be stable for a certain time to
guarantee a valid output (Setup and Hold time)
The Setup time (ts,) is the time required for the input to be
stable before a clock edge
The Hold time (t,) is the minimum amount of time required for
the input to be stable after the clock edge
Summing the propagation delay t, to the setup and hold
times, one gets the smallest allowed clock period (or largest
clock frequency) for a design

tak(min) = tey +ty +tp

Data

fw
>

'y
Clock

Rising Edge



METASTABILITY

A metastable state occurs when the
output of flip-flop is unknown

This occurs when setup or hold times
are violated




FIX TIMING ERRORS
Two main options to solve timing error inside an FPGA

Slow down clock frequency
Pipeline your logic, breaking it into stages (extra latency)

Too Much Logic =
High Propagation Delay

Good
Amount
of Logic

D Q Good D Q
Amount
of Logic

Clock r i l_ § |_




DOUBLE FLOPPING

Other causes of metastability might can appear when
Sampling a signal asynchronous to the FPGA clock
Crossing Clock Domains
In both cases, we can fix by "double-flopping" the data
In the example, the output of the first flip-flop is metastable, when sampling on the first
clock edge, but it will get stable when sampling on the second FF (second clock)

clock @\ {@\_[@\_
Dat Mefastabie Stab"e / metastable, then
. ala D Q D Q D1 — sertle fo 1 after a While
(with setup
and hold time
violations) G B=B=
> Q2 =>

>
when captured by the second FF, Q1
C' OCk already stable and there is no timing
violation and no metastability at Q2




CLOCK DOMAIN CROSSING (CDC)

In an FPGA design, you might have to work with multiple clock frequencies, especially
when interfacing with external peripherals

E.g. HDMI running at 148.5 MHz and a camera running at 25.725 MHz

Even if the clock relation is predictable, no guarantee that they are aligned (expect when
using PLLs and MMCMs, next lesson)
Moving from one domain to another requires a synchroniser:

Double Flip-Flop Synchroniser
Handshaking Synchroniser
FIFO Synchroniser



DOUBLE FLIP-FLOP SYNCHRONISER

This Technique can be used if the
following criteria is satisfied

The source clock domainis

slower than destination clock

domain

CDC is on a control signal

(either single bit or multibit).
Itis enough to input the output
data from the slower clock
domain into a double FF
synchroniser, running with the

faster clock

Comb :
DQ Dinlp B fp q

j> D> >
CLKA CLKB ——[::———————————[_—

Din

Ds
Dout

Metastable Stable Output
phase

|
|

Dou
logic



HANDSHAKING SYNCHRONISER

Guarantees sampling of correct Soucecod dorein Pestnatencock omen
| |
data independently from source —p o LD |
. . . | | n bit data Dat th | |
and destination clock relation | x| e | pex|
. . = . |
Mainly used to synchronise : ! - Handshakesynchronizer - : !
| | |
vector signals not changing ! e o ! !
. | ! | | | |
continuously or very often ! ! ! |,> cix |f> ax | | ! !
. .y | | |
Requires additional latency for i sending |! i : : Receiving |
the handshake oMo ! ! sinomecee! | FSM ||
Q bp——Q D T
acknowledge/requests i ctalkers | | i d L i disteners i
Data must be stable for the ! | ! _I —| | ! !
| f T | I |
M TTTTTT T T T |

entire period of handshaking [H— [ —



FIFO SYNCHRONISER

We introduced the concept of FIFOs in
lesson 7
We considered in that case a synchronous
FIFO, read and write clocks are the same
An asynchronous FIFO (independent
clocks) can be used to synchronise large
amount of data between clock domains

Fundamental to keep track of FIFO status
(empty/full)
Requires internal CDC between
read/write address (multi-bit)

wdk
wiull

whalid

Y

FIFO

h 4

rlk Reader

rempty

rready
rdata




GRAY CODE

To deal with synchronisation issues
between write and read addresses,
let’s introduce the gray code

Gray Code is a way to order binary
numbers, such that two successive
values always differ in only one bit
Read and Write address in the FIFO
can be translated to gray code

Decimal | Binary | Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100




ASYNCHRONOUS FIFO SYNCHRONISER

Translating the write/read
address to gray code, we can
deal with the comparison to
check the FIFO status

A double-FF synchroniser is
enough when moving read and
write address between clock
domains

Gray code ensures that only
one bitis changed (avoiding
multiple-bit metastability)

wiull

‘Write Control

Gray

Read Control

counter

whalid

wdata

Gray
counter

rdk

rready

rempty

Dual port RAM
waddr raddr
write rdata

rdata




CLOCKING RESOURCES ON 7-SERIES AMD FPGA

FPGA are divided in clock regions
Each clock region has

50 rows of Logic Slices

5010s

10 36k Block RAMs

20 DSPs
Clocks can be

Global

Regional

Regional plus adjacent



GLOBAL CLOCKS (BUFG)

There are 32 global clock lines that can clock
and provide control signals to all sequential
elements in the device

16 in the top and 16 in the bottom half

Global clock buffers (BUFG) drive global clocks
and are used to access global clock lines

BUFG can only be driven by things in their own
half

Each clock region can support up to 12 of these
clock lines (HROW)

RRRRRR

Horzontal

cccccc

nnnnnn

Cosy
poont
Clock Ragion ! Glock Region
i
— N B i,
i
|
|
| [remmces
| R
- Clock
Fegon
L5 Detate
| View
o
Horizontal Clock /
Row (HROW) (=)
I
i

xxxxxxxxxxxxxx

mmmmmmm




BUFH

Each clock region has also access to 12
horizontal clock buffers (BUFH)

One for each HROW

BUFH spans the full clock region and the
horizontal adjacent region

Preferred when logic spans one or two clock
regions

Same performance as BUFG

Clock
Backbone

Fabric

iV




BUFR AND BUFIO

Regional clock (BUFR) omacersy omomimy |
Only available in a single clock region f**-m | - B
4 BUFRs per region 2l (Lr etﬁ%)w s
/O Clock Buffers (BUFIO) o ﬂ ﬁ \ )
Drives or can be driven by the I/O banksina = : e —T\\A : l Sogead
region A \m\w o

Cannot drive logic in the device

Ideal in source-synchronous applications
where a forwarded clock is used to capture
incoming data

4 BUFIO per region



BUFMR

Multi Region Clock Buffer (BUFMR)

Can drive BUFIO and BUFR in vertically
adjacentregions

Mostly used for multi-region I/O interfaces

2 BUFMRs per clock region

i
1
1 suFr |OF 1
| Region/Bank H
: BUFIO H
| i
it bttt Bttt 4
H %cua JﬂcE
| Region/Bank < D
BUFMRCE T
! <
e S (b bt 4|
|
H cLA H
: Region/Bank :
1 i
1



CLOCK PINS

Four pair of clock pins per |0 bank per clock region
Artix7 has one 10 bank per region
Differential Clocks

P (master) and N (slave)
Requires an Differential Signal Input Buffer (IBUFDS)

Single Ended Clocks

Use P (master)
Other pin can be used for logic


https://docs.amd.com/r/en-US/ug953-vivado-7series-libraries/IBUFDS

CLOCK GENERATION INSIDE AN FPGA

Each Clock Region includes a Clock
Management Tile (CMT) that can be used
to generate clocks from several clock
sources
Each CMT consists of:

One Phase Locked Loop (PLL)

One Mixed Mode Clock Manager (MMCM)
MMCM and PLL can be instantiated from
the IP catalogue

PLL has a subset of the features of MMCM

Maximum allowed input/output clock
frequency for CMT is 800 MHz on Artix-7

BUFR
IBUFG (CC)
BUFG

CLKINT
CLKINZ

CLKFB

CLKIN1
CLKINZ

e BUFG
BUFH

/ \

CLKFB

MMCM

. Bure
BUFH

w2 a2 o0 oassn



TIMING ANALYSIS

Vivado analyses the timing conditions of your design, when running the implementation
When transferring between sequential cells or ports, the data is:

Launched by one of the edges of the source clock, which is called the launch edge (t))

Captured by one of the edges of the destination clock, which is called the capture edge (t.).
Calculates the most pessimistic Setup, Hold and Pulse Width Slacks (S)

S(Su) =tc — t; + toy — o(clk) + Delay(dest.clk) — Delay(src.clk) — Delay(data)

S(h) =tc - t; -ty + o(clk) + Delay(dest.clk) — Delay(src.clk) — Delay(data)

Pulse Width Slacks checks the actual clock pulse width and period

4 Design Timing Summary
3

Setup Hold Pulse Width
Worst Negative Slack (WNS): -1.349 ns Worst Hold Slack {WHS): 0.130ns Worst Pulse Width Slack (WPWS): 0.345ns
Total Negative Slack (TNS):  -202.736 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 282 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 1182 Total Number of Endpoints: 1182 Total Number of Endpoints: 628

Timing constraints are not met.



TIMING CONSTRAINTS IN VIVADO

We already saw that timing constraint in Vivado are applied in . xdc files
You can define there the following constraints
Clocks (Primary, Virtual, Generated, Automatically derived). Documentation
Input and Output Delays. Documentation
Timing Exceptions. Documentation
Vivado includes a Constraint Wizard that checks the code for missing constraints (runs at
synthesis or implementation stage)


https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Defining-Clocks
https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Constraining-I/O-Delay
https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Timing-Exceptions

DOING TIMING ANALYSIS

You can check the timing of your design after synthesis or implementation
If Total Negative Slack (TNS)
And Total Hold Slack (THS)
And Total Pulse Width Slack (TPWS)
... are greater than 0, you have met timing.

4 Design Timing Summary
3

Setup Hold Pulse Width
Worst Negative Slack (WNS): -1.349 ns Worst Hold Slack (WHS): 0.130 ns Worst Pulse Width Slack (WPWS): 0.345 ns
Total Negative Slack (TNS):  -202.736 ns Tetal Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 282 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 1182 Total Number of Endpoints: 1182 Total Number of Endpoints: 628

Timing constraints are not met.



CHECK THE FAILING PATHS

In the timing report, you can check the failing paths in the design

Even when timing is met, you can check for the near offenders

Open the path for more info

€Q = & I @ IntraClockPaths-sys clk
»

Name.
7 Path21
U Path22
 Path23
U Path24
U Path25
 Path26
U Path27

Slack
A

1

1

At

Levels

ISP

High Fanout
16
16
16
16
16
16
16

From

Inst_bn_deboun...

Inst_btn_deboun.
Inst_btn_deboun.
Inst_btn_deboun.
Inst_btn_deboun.
Inst_btn_deboun.
Inst_btn_deboun.

n-Setup

ry_regl1]i4)C
ry.reg1i4)C
ry_regl1]4)C
ry.reg1i4)C
ry.regl11i4)C
ry_reg1i4)C
ry.regl1i4)C

To
Inst_bin_deboun.

Inst_btn_deboun..

Inst_btn_deboun.
Inst_bin_deboun.
Inst_btn_deboun.

Inst_bn_deboun.

Inst_bin_deboun.

regUI4YR
ry_regUlISIR
ry_reg[1EIR
1y.realI7IR
ry_regII2IR
LregUIII13IR
ry.reglI14IR

Total Delay.
3200
3200
3200
3200
3204
320
3204

Logic Delay
1014
1014
1014
1014
1014
1014
1014

NetDelay Requirement

2276
2276
2276
2276
2280
2280
2280

25
25
25
25
25
25
25

Source Clock
sys_clk pin
sys_clk_pin
sys_clk pin
sys.clk pin
sys._clk pin
sys.clk pin
sys.clk_pin

Destination Clock _Exception
sys.clk pin
sys.clk pin
sys.clk pin
sys.clk pin
sys._clk pin
sys.clk pin
sys.clk pin

Clock Uncertainty

0035
0035
0035
0035
0035
0035
0035



PATH REPORT

Path Properties >_oax
U patn21 P
< Summary

L[ Name % Path21

Slack

Source B Inst_bin,debouncersi.cnurs,ary_regU1JAJC_(rising edge-iggered cell DRE clocked by syl pi {rse0.000ns a1 2500s period=25001s7)

Destnation [ nst.bin_debouncefsig_cntrs_ary.regl1J4IR (rsinge cpin 250ms

PanGrop  sys.ckpin

PatnType Setwp (MaxatSlow Process Corner)

Requirement | 2:500ns (sys ck pinise®2.500ns- sk pi ise®0.000ms)

Data Path Delay | 3.290ns logic 1.01ns (30.824%) route 2 276ns (60.176%)

LogcLevels | 4 (LUT3=1 LUTA=1 LUTS=1 LUTE=1)

ClockPathSkew | 0.000ns.

Clockun.tainy 003505
 “Source Clock Path

Delay Type Tncr(ns) | Path-.._Locatin NetistResource(s)

(docksys.cl.nrise edge) (10000 0000

0009 0000 Sierws D

et fo=0) 0000 0000 S

IBUE(Prop buf 1 0 01458 1458 Stews @ U BUEinsw0.

et fo=1,rouec) 1967 3425 2 cwasur

BUG(Frophuig 101 (1009 3521 Ste:BUF.TRLXOVI 4@ CLK IBUF BUFG.insu0

et {02249, rorea) 156 508 7 Inti Sebounce/CLK IBUF BUFS,

et (fo=16, routec)
FoRE

FoRe Site SUCE X14Y13 D Int b, debouncelsg cnts_ary_reg{1J{4)C.
*“Data path
L[ DeiayType Tner () Path..._Location Netist Resourcels)
EDRE (Prop fdre C Q) (10518 5603 Site:SLICE X14Y13 @ It b debouncessig crrs ary regl1]4Q
et fo-2, routed) o5 6282 7 tnstbin Gebouncefsig_cnrs_ary.regl1.164]
Te(Plop W41 0L (10124 6406 Site:SUCEXISYI3 4 Insbin.ebouncersia out real1LL510
net o1, rousec) 0209 6708 7 tnst_btn_debouncelsig outregl1L:5.n.0

LTS (Prop WS 140 (90124 6828 Ste:SUICE X112 4 It bn debouncelsig out rel111 4/0

et (fo=1, routed) 0154 6982 7 Inst_btn,_debounce/sig_out reg(1L.4.n.0
T6(Prop UG SO (0124 7.106  Site: SUCEX13Y12 4 Inst_btn debouncesig_out regl1Li2/0
et (f0=2,routed) 0502 7608 7 Inst_btn_debouncelsig_out reg(1Li2.n.0

WI3Prop UGB 100] (10124 7732 Site:SLICEXISY13 4@ Inst btn debouncelsig cnrs anf{iIoLi 10

0643 8375 7 nst_btn,_debounce/sig_crirs ary{1I[0L.1.n.0
Site: SUCEX14Y13 [ Inst_bn_debounce/sig_cnirs_ary_regl1114J/R
8375

Parh
Report | Cels Nets NetSegments  Optons

24/30



FIXING TIMING

If you fail timing:
Understand where is the problem
Change your design (reduce clock speed, add pipeline stages)
Run implementation (if timing issue arises from synthesis)
Optimise implementation (More in another lesson)



PHYSICAL CONSTRAINTS

Physical Constrains refers to Netlist, 10, placement, Routing and Configurations

Reminder of general form

set_property <property> <value> <object_list>

Cells and nets are specified hierarchically

[get_cells top/modl/mod2/net0]

Consider using variables, if applying multiple property to a net/cell

set myCell [get_cells top/modl/mod2/net0]
set_property <property> <value> \S$mycCell




MOST COMMON PHYSICAL CONSTRAINTS

MARK_DEBUG (TRUE/FALSE):Used in hardware Test (future lecture)

DONT_TOUCH (TRUE/FALSE): Tells Vivado to not optimise away or merge this
particular net. Useful when duplicating signals

TOSTANDARD: Set an I/O standard for an I/O port (e.g. LVCMOS33)
LOC: Places a logical element from the netlist to a site on the device.

Full list available here


https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Physical-Constraints

LAB 17: TIMING CONSTRAINTS



LAB 18: GENERATING CLOCKS



The figures in these slides are taken from:

- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved

- allaboutfpga.com

- nandland.com

- docs.amd.com

- https://www.symmetryelectronics.com/

- https://www.edn.com/

- Stephen A. Edwards, Columbia University, Fundamentals of Computer Systems, Spring 2012
- https://medium.com/well-red/state-machines-for-everyone-part-1-introduction-b7ac9aaf482e
- www.icdesigntips.com

- techdocs.altium.com

- anysilicon.com

- Yngve Hafting 2021, University of Oslo



