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PROPAGATION DELAYS

Propagation delay is the time needed for a signal to travel from the a source to a
destination component
Sources of Propagation Delay:
Logic Delay: The delay introduced by the combinational logic (e.g., LUTs, multiplexers).
Routing Delay: The delay caused by the interconnects or wiring between logic elements.
FPGA software include a time analyser tool which checks whether the design meets the
timing
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SETUP AND HOLD TIMES

Signal transitions on FPGA are not instantaneous of course
Data input to a Flip-Flop must be stable for a certain time to
guarantee a valid output (Setup and Hold time)
The Setup time (ts,) is the time required for the input to be
stable before a clock edge
The Hold time (t,) is the minimum amount of time required for
the input to be stable after the clock edge
Summing the propagation delay t, to the setup and hold
times, one gets the smallest allowed clock period (or largest
clock frequency) for a design

tak(min) = tey +ty +tp
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METASTABILITY

A metastable state occurs when the
output of flip-flop is unknown

This occurs when setup or hold times
are violated




FIX TIMING ERRORS
Two main options to solve timing error inside an FPGA

Slow down clock frequency
Pipeline your logic, breaking it into stages (extra latency)
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DOUBLE FLOPPING

Other causes of metastability might can appear when
Sampling a signal asynchronous to the FPGA clock
Crossing Clock Domains
In both cases, we can fix by "double-flopping" the data
In the example, the output of the first flip-flop is metastable, when sampling on the first
clock edge, but it will get stable when sampling on the second FF (second clock)
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CLOCK DOMAIN CROSSING (CDC)

In an FPGA design, you might have to work with multiple clock frequencies, especially
when interfacing with external peripherals

E.g. HDMI running at 148.5 MHz and a camera running at 25.725 MHz

Even if the clock relation is predictable, no guarantee that they are aligned (expect when
using PLLs and MMCMs, next lesson)
Moving from one domain to another requires a synchroniser:

Double Flip-Flop Synchroniser
Handshaking Synchroniser
FIFO Synchroniser



DOUBLE FLIP-FLOP SYNCHRONISER

This Technique can be used if the
following criteria is satisfied

The source clock domainis

slower than destination clock

domain

CDC is on a control signal

(either single bit or multibit).
Itis enough to input the output
data from the slower clock
domain into a double FF
synchroniser, running with the

faster clock
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HANDSHAKING SYNCHRONISER
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FIFO SYNCHRONISER

We introduced the concept of FIFOs in
lesson 7
We considered in that case a synchronous
FIFO, read and write clocks are the same
An asynchronous FIFO (independent
clocks) can be used to synchronise large
amount of data between clock domains

Fundamental to keep track of FIFO status
(empty/full)
Requires internal CDC between
read/write address (multi-bit)
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GRAY CODE

To deal with synchronisation issues
between write and read addresses,
let’s introduce the gray code

Gray Code is a way to order binary
numbers, such that two successive
values always differ in only one bit
Read and Write address in the FIFO
can be translated to gray code

Decimal | Binary | Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100




ASYNCHRONOUS FIFO SYNCHRONISER

Translating the write/read
address to gray code, we can
deal with the comparison to
check the FIFO status

A double-FF synchroniser is
enough when moving read and
write address between clock
domains

Gray code ensures that only
one bitis changed (avoiding
multiple-bit metastability)
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CLOCKING RESOURCES ON 7-SERIES AMD FPGA

FPGA are divided in clock regions
Each clock region has

50 rows of Logic Slices

5010s

10 36k Block RAMs

20 DSPs
Clocks can be

Global

Regional

Regional plus adjacent



GLOBAL CLOCKS (BUFG)

There are 32 global clock lines that can clock
and provide control signals to all sequential
elements in the device

16 in the top and 16 in the bottom half

Global clock buffers (BUFG) drive global clocks
and are used to access global clock lines

BUFG can only be driven by things in their own
half

Each clock region can support up to 12 of these
clock lines (HROW)
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BUFH

Each clock region has also access to 12
horizontal clock buffers (BUFH)

One for each HROW

BUFH spans the full clock region and the
horizontal adjacent region

Preferred when logic spans one or two clock
regions

Same performance as BUFG
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BUFR AND BUFIO

Regional clock (BUFR) omacersy omomimy |
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Cannot drive logic in the device

Ideal in source-synchronous applications
where a forwarded clock is used to capture
incoming data
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BUFMR

Multi Region Clock Buffer (BUFMR)

Can drive BUFIO and BUFR in vertically
adjacentregions

Mostly used for multi-region I/O interfaces

2 BUFMRs per clock region
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CLOCK PINS

Four pair of clock pins per |0 bank per clock region
Artix7 has one 10 bank per region
Differential Clocks

P (master) and N (slave)
Requires an Differential Signal Input Buffer (IBUFDS)

Single Ended Clocks

Use P (master)
Other pin can be used for logic


https://docs.amd.com/r/en-US/ug953-vivado-7series-libraries/IBUFDS

CLOCK GENERATION INSIDE AN FPGA

Each Clock Region includes a Clock
Management Tile (CMT) that can be used
to generate clocks from several clock
sources
Each CMT consists of:

One Phase Locked Loop (PLL)

One Mixed Mode Clock Manager (MMCM)
MMCM and PLL can be instantiated from
the IP catalogue

PLL has a subset of the features of MMCM

Maximum allowed input/output clock
frequency for CMT is 800 MHz on Artix-7
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TIMING ANALYSIS

Vivado analyses the timing conditions of your design, when running the implementation
When transferring between sequential cells or ports, the data is:

Launched by one of the edges of the source clock, which is called the launch edge (t))

Captured by one of the edges of the destination clock, which is called the capture edge (t.).
Calculates the most pessimistic Setup, Hold and Pulse Width Slacks (S)

S(Su) =tc — t; + toy — o(clk) + Delay(dest.clk) — Delay(src.clk) — Delay(data)

S(h) =tc - t; -ty + o(clk) + Delay(dest.clk) — Delay(src.clk) — Delay(data)

Pulse Width Slacks checks the actual clock pulse width and period

4 Design Timing Summary
3

Setup Hold Pulse Width
Worst Negative Slack (WNS): -1.349 ns Worst Hold Slack {WHS): 0.130ns Worst Pulse Width Slack (WPWS): 0.345ns
Total Negative Slack (TNS):  -202.736 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 282 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 1182 Total Number of Endpoints: 1182 Total Number of Endpoints: 628

Timing constraints are not met.



TIMING CONSTRAINTS IN VIVADO

We already saw that timing constraint in Vivado are applied in . xdc files
You can define there the following constraints
Clocks (Primary, Virtual, Generated, Automatically derived). Documentation
Input and Output Delays. Documentation
Timing Exceptions. Documentation
Vivado includes a Constraint Wizard that checks the code for missing constraints (runs at
synthesis or implementation stage)


https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Defining-Clocks
https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Constraining-I/O-Delay
https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Timing-Exceptions

DOING TIMING ANALYSIS

You can check the timing of your design after synthesis or implementation
If Total Negative Slack (TNS)
And Total Hold Slack (THS)
And Total Pulse Width Slack (TPWS)
... are greater than 0, you have met timing.

4 Design Timing Summary
3

Setup Hold Pulse Width
Worst Negative Slack (WNS): -1.349 ns Worst Hold Slack (WHS): 0.130 ns Worst Pulse Width Slack (WPWS): 0.345 ns
Total Negative Slack (TNS):  -202.736 ns Tetal Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 282 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 1182 Total Number of Endpoints: 1182 Total Number of Endpoints: 628

Timing constraints are not met.



CHECK THE FAILING PATHS

In the timing report, you can check the failing paths in the design

Even when timing is met, you can check for the near offenders

Open the path for more info
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PATH REPORT
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FIXING TIMING

If you fail timing:
Understand where is the problem
Change your design (reduce clock speed, add pipeline stages)
Run implementation (if timing issue arises from synthesis)
Optimise implementation (More in another lesson)



PHYSICAL CONSTRAINTS

Physical Constrains refers to Netlist, 10, placement, Routing and Configurations

Reminder of general form

set_property <property> <value> <object_list>

Cells and nets are specified hierarchically

[get_cells top/modl/mod2/net0]

Consider using variables, if applying multiple property to a net/cell

set myCell [get_cells top/modl/mod2/net0]
set_property <property> <value> \S$mycCell




MOST COMMON PHYSICAL CONSTRAINTS

MARK_DEBUG (TRUE/FALSE):Used in hardware Test (future lecture)

DONT_TOUCH (TRUE/FALSE): Tells Vivado to not optimise away or merge this
particular net. Useful when duplicating signals

TOSTANDARD: Set an I/O standard for an I/O port (e.g. LVCMOS33)
LOC: Places a logical element from the netlist to a site on the device.

Full list available here


https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Physical-Constraints

LAB 17: TIMING CONSTRAINTS



LAB 18: GENERATING CLOCKS
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