
INTRODUCTION TO FPGA PROGRAMMING

LESSON 11: TIMING ON FPGAS

Dr. Davide Cieri1

1Max-Planck-Institut für Physik, Munich

September 2024

1 / 30

PROPAGATION DELAYS
• Propagation delay is the time needed for a signal to travel from the a source to a

destination component
• Sources of Propagation Delay:

– Logic Delay: The delay introduced by the combinational logic (e.g., LUTs, multiplexers).
– Routing Delay: The delay caused by the interconnects or wiring between logic elements.

• FPGA software include a time analyser tool which checks whether the design meets the
timing

2 / 30

SETUP AND HOLD TIMES

• Signal transitions on FPGA are not instantaneous of course
• Data input to a Flip-Flop must be stable for a certain time to

guarantee a valid output (Setup and Hold time)
– The Setup time (tsu) is the time required for the input to be

stable before a clock edge
– The Hold time (th) is the minimum amount of time required for

the input to be stable after the clock edge

• Summing the propagation delay tp to the setup and hold
times, one gets the smallest allowed clock period (or largest
clock frequency) for a design

tclk(min) = tsu + th + tp

3 / 30

METASTABILITY

• A metastable state occurs when the
output of flip-flop is unknown

• This occurs when setup or hold times
are violated

4 / 30

FIX TIMING ERRORS
• Two main options to solve timing error inside an FPGA

– Slow down clock frequency
– Pipeline your logic, breaking it into stages (extra latency)

5 / 30

DOUBLE FLOPPING
• Other causes of metastability might can appear when

– Sampling a signal asynchronous to the FPGA clock
– Crossing Clock Domains

• In both cases, we can fix by "double-flopping" the data

• In the example, the output of the first flip-flop is metastable, when sampling on the first
clock edge, but it will get stable when sampling on the second FF (second clock)

6 / 30

CLOCK DOMAIN CROSSING (CDC)

• In an FPGA design, you might have to work with multiple clock frequencies, especially
when interfacing with external peripherals

– E.g. HDMI running at 148.5 MHz and a camera running at 25.725 MHz

• Even if the clock relation is predictable, no guarantee that they are aligned (expect when
using PLLs and MMCMs, next lesson)

• Moving from one domain to another requires a synchroniser:
– Double Flip-Flop Synchroniser
– Handshaking Synchroniser
– FIFO Synchroniser

7 / 30

DOUBLE FLIP-FLOP SYNCHRONISER

• This Technique can be used if the
following criteria is satisfied

– The source clock domain is
slower than destination clock
domain

– CDC is on a control signal
(either single bit or multibit).

• It is enough to input the output
data from the slower clock
domain into a double FF
synchroniser, running with the
faster clock

8 / 30

HANDSHAKING SYNCHRONISER

• Guarantees sampling of correct
data independently from source
and destination clock relation

– Mainly used to synchronise
vector signals not changing
continuously or very often

– Requires additional latency for
the handshake
acknowledge/requests

– Data must be stable for the
entire period of handshaking

9 / 30

FIFO SYNCHRONISER

• We introduced the concept of FIFOs in
lesson 7

– We considered in that case a synchronous
FIFO, read and write clocks are the same

– An asynchronous FIFO (independent
clocks) can be used to synchronise large
amount of data between clock domains

• Fundamental to keep track of FIFO status
(empty/full)

– Requires internal CDC between
read/write address (multi-bit)

10 / 30

GRAY CODE

• To deal with synchronisation issues
between write and read addresses,
let’s introduce the gray code

• Gray Code is a way to order binary
numbers, such that two successive
values always differ in only one bit

• Read and Write address in the FIFO
can be translated to gray code

Decimal Binary Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100

11 / 30

ASYNCHRONOUS FIFO SYNCHRONISER

• Translating the write/read
address to gray code, we can
deal with the comparison to
check the FIFO status

– A double-FF synchroniser is
enough when moving read and
write address between clock
domains

– Gray code ensures that only
one bit is changed (avoiding
multiple-bit metastability)

12 / 30

CLOCKING RESOURCES ON 7-SERIES AMD FPGA

• FPGA are divided in clock regions
• Each clock region has

– 50 rows of Logic Slices
– 50 IOs
– 10 36k Block RAMs
– 20 DSPs

• Clocks can be
– Global
– Regional
– Regional plus adjacent

13 / 30

GLOBAL CLOCKS (BUFG)

• There are 32 global clock lines that can clock
and provide control signals to all sequential
elements in the device

– 16 in the top and 16 in the bottom half

• Global clock buffers (BUFG) drive global clocks
and are used to access global clock lines

• BUFG can only be driven by things in their own
half

• Each clock region can support up to 12 of these
clock lines (HROW)

14 / 30

BUFH

• Each clock region has also access to 12
horizontal clock buffers (BUFH)

– One for each HROW

• BUFH spans the full clock region and the
horizontal adjacent region

• Preferred when logic spans one or two clock
regions

• Same performance as BUFG

15 / 30

BUFR AND BUFIO

• Regional clock (BUFR)
– Only available in a single clock region
– 4 BUFRs per region

• I/O Clock Buffers (BUFIO)
– Drives or can be driven by the I/O banks in a

region
– Cannot drive logic in the device
– Ideal in source-synchronous applications

where a forwarded clock is used to capture
incoming data

– 4 BUFIO per region

16 / 30

BUFMR

• Multi Region Clock Buffer (BUFMR)
– Can drive BUFIO and BUFR in vertically

adjacent regions

• Mostly used for multi-region I/O interfaces

• 2 BUFMRs per clock region

17 / 30

CLOCK PINS

• Four pair of clock pins per IO bank per clock region
– Artix7 has one IO bank per region

• Differential Clocks
– P (master) and N (slave)
– Requires an Differential Signal Input Buffer (IBUFDS)

• Single Ended Clocks
– Use P (master)
– Other pin can be used for logic

18 / 30

https://docs.amd.com/r/en-US/ug953-vivado-7series-libraries/IBUFDS

CLOCK GENERATION INSIDE AN FPGA
• Each Clock Region includes a Clock

Management Tile (CMT) that can be used
to generate clocks from several clock
sources

• Each CMT consists of:
– One Phase Locked Loop (PLL)
– One Mixed Mode Clock Manager (MMCM)

• MMCM and PLL can be instantiated from
the IP catalogue

• PLL has a subset of the features of MMCM

• Maximum allowed input/output clock
frequency for CMT is 800 MHz on Artix-7

19 / 30

TIMING ANALYSIS
• Vivado analyses the timing conditions of your design, when running the implementation
• When transferring between sequential cells or ports, the data is:

– Launched by one of the edges of the source clock, which is called the launch edge (tl)
Captured by one of the edges of the destination clock, which is called the capture edge (tc).

• Calculates the most pessimistic Setup, Hold and Pulse Width Slacks (S)
– S(Su) = tc − tl + tsu − σ(clk) + Delay(dest.clk) − Delay(src.clk) − Delay(data)
– S(h) = tc − tl − th + σ(clk) + Delay(dest.clk) − Delay(src.clk) − Delay(data)
– Pulse Width Slacks checks the actual clock pulse width and period

20 / 30

TIMING CONSTRAINTS IN VIVADO

• We already saw that timing constraint in Vivado are applied in .xdc files
• You can define there the following constraints

– Clocks (Primary, Virtual, Generated, Automatically derived). Documentation
– Input and Output Delays. Documentation
– Timing Exceptions. Documentation

• Vivado includes a Constraint Wizard that checks the code for missing constraints (runs at
synthesis or implementation stage)

21 / 30

https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Defining-Clocks
https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Constraining-I/O-Delay
https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Timing-Exceptions

DOING TIMING ANALYSIS

• You can check the timing of your design after synthesis or implementation
– If Total Negative Slack (TNS)
– And Total Hold Slack (THS)
– And Total Pulse Width Slack (TPWS)
– ... are greater than 0, you have met timing.

22 / 30

CHECK THE FAILING PATHS

• In the timing report, you can check the failing paths in the design

• Even when timing is met, you can check for the near offenders

• Open the path for more info

23 / 30

PATH REPORT

24 / 30

FIXING TIMING

• If you fail timing:
– Understand where is the problem
– Change your design (reduce clock speed, add pipeline stages)
– Run implementation (if timing issue arises from synthesis)
– Optimise implementation (More in another lesson)

25 / 30

PHYSICAL CONSTRAINTS

• Physical Constrains refers to Netlist, IO, placement, Routing and Configurations

• Reminder of general form

s e t _ p r o p e r t y < p r o p e r t y > < v a l u e > < o b j e c t _ l i s t >

• Cells and nets are specified hierarchically

[g e t _ c e l l s top / mod1 / mod2 / n e t 0]

• Consider using variables, if applying multiple property to a net/cell

s e t m y C e l l [g e t _ c e l l s top / mod1 / mod2 / n e t 0]
s e t _ p r o p e r t y < p r o p e r t y > < v a l u e > \ $ m y C e l l

26 / 30

MOST COMMON PHYSICAL CONSTRAINTS

• MARK_DEBUG (TRUE/FALSE): Used in hardware Test (future lecture)

• DONT_TOUCH (TRUE/FALSE): Tells Vivado to not optimise away or merge this
particular net. Useful when duplicating signals

• IOSTANDARD: Set an I/O standard for an I/O port (e.g. LVCMOS33)

• LOC: Places a logical element from the netlist to a site on the device.

• Full list available here

27 / 30

https://docs.amd.com/r/en-US/ug903-vivado-using-constraints/Physical-Constraints

LAB 17: TIMING CONSTRAINTS

28 / 30

LAB 18: GENERATING CLOCKS

29 / 30

The figures in these slides are taken from:
- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved
- allaboutfpga.com
- nandland.com
- docs.amd.com
- https://www.symmetryelectronics.com/
- https://www.edn.com/
- Stephen A. Edwards, Columbia University, Fundamentals of Computer Systems, Spring 2012
- https://medium.com/well-red/state-machines-for-everyone-part-1-introduction-b7ac9aaf482e
- www.icdesigntips.com
- techdocs.altium.com
- anysilicon.com
- Yngve Hafting 2021, University of Oslo

30 / 30

