Lab18.md 2024-08-29

Lab 18: Generating clocks on FPGAs

In this lab, we'll see how to generate derived clocks properly on a AMD/Xilinx FPGAs. We use the same
design asin Lab 17.

In the previous lab, the derived clock (1/5 speed of the system) was generated using a self-coded clock
divider module, which was sensitive to the rising edge of the input system clock. The problem with this
approach is that we could not be change the clock at half cycle, resulting in an output clock with a duty cycle
of 40%.

To generate a proper half-duty clock, the best way is to use the Mixed Mode Clock Manager (MMCM) module
on the FPGA.

Exercise: Using the Vivado Clocking Wizard

Go to and open the Vivado project.

vivado labl8.xpr &

This is the same project as .Have a look at the file, to see how we created the
derived clock. Run the Simulation, to see the clock behaviour. You might have to zoom in.

IF you look at the signal, you can immediately see the discrepancy in the time the signal is
high and low.

th_GPIO_demo_behav.wcfg

Q W @ a X ¥ « I« T o

> W SW_tb[15:0] 0000
4 CLK tb 1

> W BTC_tb[0:0] 0
> W LED_tb[15:0] 0000

10000 ps

Let's now generate our clock properly. Open the IP Catalog and search for Clocking Wizard. Double click on
it, to open the configuration window.

Lab18.md 2024-08-29

Customize IP o x
Clocking Wizard (6.0)

@ Documentation (= 1P Location C Switch to Defaults

1P Symbol Resource Component Name | cli wiz_0
) show isabled ports Clocking Options Output Clocks | PortRenaming | MMcM Settings | summary

Clock Monitor

0 Enable Clock Monitoring

::+ Primitive
" + ®mmen O

" + Clocking Features Jitter Optimization
" =+ " () Frequency Synthesis () Minimize Power ® Balanced
) Phase Alignment () Spread Spectrum Minimize Output jitter
(O Dynamic Reconfig () Dynamic Phase shift Maximize Input jter fiktering
— reset 0 safe Clockstartup
Dynamic Reconfig Interface
Options
dk_out! b=
locked =
Input ClockInformation
nput Clock Port Name Input Frequency(MFz) Jiter Options nput tter Source
primary cicint 100000 10.000-800.000 u ~ Jooto0 Single ended clock capable pin
O | secondary dk in2 100,000 0010

= dk_in1

By default, it will show all the configurable port, that we don't need for our design. Untick *Show disabled
ports’, to have a slimmer module.

In the Clocking Options page you can configure the input clock. By default, it is set to 100 MHz, which is what
we are using, so we don't need to touch anything here.

Go now to the Output Clocks tab. There is by default one output clock enabled . Modify the
requested output frequency to be 20 MHz, having a duty cycle of 50 %. Untick the in the Enable
Options area at the bottom of the window.

Have a look at the other options in the configuration. Once you are done, click on OK and generate the IP
Output Products.

Re-customize IP 56 ¢
Clocking Wizard (6.0) P
@ Documentation = IP Location C Switch to Defaults
1P symbol Resource Component Name |clk wiz_0
(1) Show disabled ports Clocking Options | OutputClocks ~ Port Renaming | MMCM Settings | Summary
-~
The phase is calculated relative to the active input clock.
output clock portName Output Freq (MHz) Phase (degrees) Duty Cycle (%) v Use Max Freq
Requested Actual Requested Actual Requested Actual Fine Ps of buffer
) clk_outt clicoutt 20,000 2000000 0000 0000 50.000 500 BUFG ~ 464037
(O dlkouz clk out2 100000 0000 50.000
dlkouta 100000 0000 50.000
dlkoute 100000 0000 50.000
dlkouts 100000 0000 50.000
clkouts 100000 0000 50.000
clkout7 100000 0000 50.000
Clocking Feedback
reset
cli_out1 source signaling
= OutputClock Sequence Number
ck_inl
1 ® Automatic Control On-Chip
1 Automatic Control Off-Chip
1 User-Controlled On-Chip
1
User-Controlled Off-Chip
1
1
1
Enable Optional Inputs / Outputs for MMCM/PLL Reset Type
@ reset () powerdown () input_clk stopped ® Active High O Active Low
[locked () clifbstopped

Lab18.md 2024-08-29

Now we need to replace the clock divider with the IP we just created. Open the file from
the Source Manager, and comment out the lines corresponding to the block. Instantiate
now the IP, using the generated template, as we did in Lab 16.

Save the file and run the simulation again.

You might notice that the even if the reset signal is down, it takes a while for the divided clock to be
generated. This is because the simulation is accurately modelling the MMCM, and it takes a few
microseconds to stabile, before starting to output the clock. This would have been signaled by the

signal we disabled. Zoom in the wave, to actually verify that the generated clock has a period of 50 ns and is
half-duty.

th_GPIO_demo_behav.wcfg*

Q W @ a X ¥ « I« T o

10.000000 us|a~

. 000000 us

4 CLK th
> W BTC_tb[0:0]
> W LED_tb[15:0] 0000

J CLK_PERIOD 10000 ps
> M RST[0:0]

4 divided_clk

:' o ‘
e e

Generate the bitstream and load it to the board, and check its functionalities.

