
Lab18.md 2024-08-29

 / 

Lab 18: Generating clocks on FPGAs

In this lab, we'll see how to generate derived clocks properly on a AMD/Xilinx FPGAs. We use the same

design as in Lab 17.

In the previous lab, the derived clock (1/5 speed of the system) was generated using a self-coded clock

divider module, which was sensitive to the rising edge of the input system clock. The problem with this

approach is that we could not be change the clock at half cycle, resulting in an output clock with a duty cycle

of 40%.

To generate a proper half-duty clock, the best way is to use the Mixed Mode Clock Manager (MMCM) module

on the FPGA.

Exercise: Using the Vivado Clocking Wizard

Go to ~/labs/lab18/ and open the lab18.xpr Vivado project.

vivado lab18.xpr & 

This is the same project as lab17. Have a look at the clock_divider.vhd �le, to see how we created the

derived clock. Run the Simulation, to see the clock behaviour. You might have to zoom in.

If you look at the divided_clk signal, you can immediately see the discrepancy in the time the signal is

high and low.

Let's now generate our clock properly. Open the IP Catalog and search for Clocking Wizard. Double click on

it, to open the con�guration window.



Lab18.md 2024-08-29

 / 

By default, it will show all the con�gurable port, that we don't need for our design. Untick *Show disabled

ports`, to have a slimmer module.

In the Clocking Options page you can con�gure the input clock. By default, it is set to 100 MHz, which is what

we are using, so we don't need to touch anything here.

Go now to the Output Clocks tab. There is by default one output clock enabled clk_out1. Modify the

requested output frequency to be 20 MHz, having a duty cycle of 50 %. Untick the locked in the Enable

Options area at the bottom of the window.

Have a look at the other options in the con�guration. Once you are done, click on OK and generate the IP

Output Products.



Lab18.md 2024-08-29

 / 

Now we need to replace the clock divider with the IP we just created. Open the GPIO_demo.vhd �le from

the Source Manager, and comment out the lines corresponding to the clock_divider block. Instantiate

now the IP, using the generated template, as we did in Lab 16.

Save the �le and run the simulation again.

You might notice that the even if the reset signal is down, it takes a while for the divided clock to be

generated. This is because the simulation is accurately modelling the MMCM, and it takes a few

microseconds to stabile, before starting to output the clock. This would have been signaled by the lock

signal we disabled. Zoom in the wave, to actually verify that the generated clock has a period of 50 ns and is

half-duty.

Generate the bitstream and load it to the board, and check its functionalities.


