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GETTING DATA IN AND OUT

• So far, we mainly discussed about what is inside an FPGA

• Typically your FPGA will have to interface with some peripherals

• It requires the understanding of the electrical interface signals to configure the FPGA pins
correctly (Voltage, single/differential ended)

• On the FPGAs typically you have General Purpose Input/Output (GPIO) ports and
high-speed Gigabit Transceivers

– In our projects, we already used GPIO pins to connect to buttons and LEDs
– GPIO pins can be configured using physical constrains
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GPIO PINS

• GPIO pins can be configured as input/output or bidirectional

• Behaviour is driven by port declaration in VHDL entity
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ELECTRICAL CHARACTERISTICS OF GPIOS

• Many electrical characteristics of GPIO pins can be configured with physical constrains
• Operating Voltage or IOSTANDARD: this tells the FPGA how to represent a particular voltage

on a pin
– For example LVCMOS33 means that the 0 and 3.3 V voltages on the pin represent the 0 a 1

logic inputs.

• Drive Strength or DRIVE: Tells the FPGA what is the maximum current can be driven to the
pin in mA. Typically can be kept as default.

• Slew rate or SLEW: The rate of transition (0-1) on the pin. Unless you expect a very fast rate,
you can keep default also here.
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SINGLE-ENDED VS. DIFFERENTIAL SIGNALING
• To correctly decode the 0-1 logic values, FPGAs need to know what is the ground state.
• Signals can be sent from one device to the other in two ways

– Single-Ended signaling: One wire is dedicated to the transmission of the ground path. Data is
sent as a voltage on the data wire. Same ground can be used for multiple data paths.

– Differential signaling: No ground reference. Voltage is the difference between the two
terminals.

• Single-ended signaling requires less pins for the same amount of data
• Differential signaling more immune to noise and doesn’t require a common ground.
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DOUBLE-DATA RATE
• So far, we said that signals inside an FPGA must be synchronised to the rising edge of a

clock

• It is possible to configure pins to be sensitive to both rising and falling edge of the clock
(double data rate or DDR)
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DOUBLE-DATA RATE

• So far, we said that signals inside an FPGA must be synchronised to the rising edge of a
clock

• It is possible to configure pins to be sensitive to both rising and falling edge of the clock
(double data rate or DDR)

• You need to instantiate an IDDR or ODDR buffer IP to use DDR data in your FPGA
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PARALLEL VS SERIAL COMMUNICATION

• There are two possibilities to send data
– Serial: Data is sent on a single channel
– Parallel: Multiple communication channels are

used

• On top of that data can be synchronous or
asynchronous to a clock signal common to both
devices

• Naively we could think that parallel
communication would be the best choice to
sent large amounts of data (WRONG!)

8 / 22



LIMITS OF PARALLEL COMMUNICATIONS

• Sending data parallel requires multiple wire
connections

• This will eventually needs actual space on the
PCB

– Example: The 32-bit PCI slot is a few
centimeter wide

• All data lines must be synchronous to the same
clock

– High risk of clock skew (same clock arrives at
different times to each flip-flop)

• Clock speed becomes faster and faster allowing
different approaches

A photo of three 32-bit PCI slots
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SERDES
• Serializer/Deserializer or Transceivers are powerful components of (most) FPGAs
• They allow us to receive or transmit data at very high speeds (Gb/s)
• As they name suggests, they (de)serialise the data before(after)transmitting(receiving) it

to(from) a single line
• They can achieve data rates that are impossible with standard pins
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HOW A TRANSCEIVER WORKS
• On the transmitter side, data is serialised and transmitted to the output channel at a

chosen clock speed

• On the receiver side, data is analysed by a Clock Data Recovery (CDR) module, that recovers
the clock signal, which is finally used by a deserializer module to decode the data
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TYPES OF SERIAL COMMUNICATION

• Synchronous Communication:
– Sender and receiver share a common clock signal.
– Example: SPI (Serial Peripheral Interface), I2C.

• Asynchronous Communication:
– No shared clock; sender and receiver synchronize based on start and stop bits.
– Example: UART (Universal Asynchronous Receiver-Transmitter).
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UART

• UART (Universal Asynchronous
Receiver-Transmitter) is a hardware
communication protocol used for
asynchronous serial communication between
devices

– Asynchronous: No shared clock between
sender and receiver.

– Full-duplex communication: Simultaneous
transmission and reception of data.

– Commonly used in embedded systems for
simple serial data transfer.

The EXAR 16550 IC, implementing UART
interface

13 / 22



HOW UART WORKS
• Data Frame Structure:

1. Idle State: The line is high when idle.
2. Start Bit: Signals the beginning of a data frame.
3. Data Bits: Typically 5 to 9 bits, representing the actual data.
4. Parity Bit (optional): Used for error detection.
5. Stop Bit(s): Indicates the end of the data frame (1 or 2 bits).

• Baud Rate:
– The speed of communication, measured in bits per second (bps).
– Both transmitter and receiver must agree on the same baud rate.
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SPI
• Serial Peripheral Interface (SPI) is a standard for synchronous serial communication

– Widely used for short-distance communication between ICs
• Uses a Main(Master)/Sub(Slave) architecture

– Main can be connected to multiple slaves
• Four serial lines between Main and Sub(s):

– Active low chip select signal C̄S
– Clock signal from Main SCLK
– Serial Data from Main to Sub MOSI (Main Out, Sub In)
– Serial Data from Sub to Main MISO (Main In, Sub Out)
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SPI OPERATATION

1. SPI Main first selects a sub device by
pulling its C̄S low

2. SPI Main generates the clock signal
(SCLK) to synchronize data transfer.

3. Data is simultaneously transmitted on
MISO and MOSI lines.

4. When complete, the main stops
toggling the clock signal, and typically
deselects the sub.
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LINE CODE

• So far, we saw the simple case where the data is transmitted without being encoded
• This is the most simple line code, called non-return-to-zero (NRZ)

– Ones are represented by a positive voltage, zero by a negative (or ground).

• It is unsuitable for long communication channels and transceiver interface
• There is no guarantee on the number of 0-1 transitions in the transmission

– Difficult to extract the clock information from the data
– If words with many consecutive 1s or 0s are sent, there is a risk to overcharge the coupling

capacitor, resulting in a bit error (Direct Current or DC bias)
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TYPES OF LINE CODES

• To avoid DC bias, you can use a DC-balanced line code, that eliminates the bias.
• Three types:

– Constant-weight code: each transmitted word that contains positive or negative levels, is
designed to contain enough of the opposite levels, such that the average level is zero. E.g.
Manchester code

– Paired disparity code: Code words that averages to a certain level are paired with words that
averages to the opposite level. Receiver decodes in such a way, that both words are translated
in the same way. E.g. 8b/10b encoding

– Scrambling code: Data is manipulated before transmitting. Manipulation is reversed at the
receiver side by a descrambler module. E.g. 64b/66b encoding.
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MANCHESTER CODE
– A logical ’1’ is represented by a transition from low to high (0 to 1) in the middle of the bit

period.
– A logical ’0’ is represented by a transition from high to low (1 to 0) in the middle of the bit

period.
– The existence of guaranteed transitions allows the signal to be self-clocking
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LAB 20: DESIGN AN UART TRANSMITTER
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LAB 21: CONNECTING TO A VGA DISPLAY
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