Lab20.md

Lab 20: Design an UART Transmitter

2024-08-28

In this lab, we will design a UART Transmitter module, and check the results using the a remote serial console

on our laptop.

The design has the following port Interface

Port Direction Type width
CLK In std_logic 1
BTN IN std_logic_vector 5
UART_TXD OUT std_logic 1

Depending on which button is pressed, the design will transmit a different string on the

character in the string is represented by an 8-bit word, using the ASCII notation.

ASCII TABLE

. Each

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] 64 40 @ 96 60 N
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 (o) 99 63 C
4 4 [END OF TRANSMISSION] 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ! 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 | 105 69 i
10 A [LINE FEED] 42 2A * 74 4A) 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C , 76 4C L 108 6C I
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E o 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F (o] 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 o 80 50 P 112 70 P
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 535 3 83 53 S 115 73 3
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 V] 117 75 u
22 16 [SYNCHRONOQUS IDLE] 54 36 6 86 56 Vv 118 76 v
23 17 [END OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A y 4 122 7A z
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 7D }
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F 127 7F [DEL]

Exercise 1. Design a UART Transmitter

The first step is to design a UART Transmitter module. Go to and open

with a text editor.

kate src/UART TX.vhd &

Lab20.md 2024-08-28
The module should have the following ports and generics

Generic Type Default

BAUDRATE integer 96000

CLKRATE integer 100000000

Port Direction Type Width

CLK In std_logic 1

DATA IN std_logic_vector 8

DV IN std_logic 1

BUSY ouT std_logic 1

TX_OUT OUT std_logic 1

DONE ouT std_logic 1
e The is the number of symbols transferred per seconds.
. is the 8-bit word to transmit.
. is the data valid bit associated to the
. signals whether the module can accept or not input data.
. is the output UART serial line.
. tells that the module has finished transmitting data.

To implement the UART Transmitter, you have to do the following.
o Calculate a constant , Which is equal to the ratio between the system clock and the
baud rate.

o Create a FSM with the following states: , , ,

o When , the module should send 1 on (Refer to the lesson for the UART protocol).

and should be 0. If , copy the in a local signal and move to
the state.

o When , should go low for ,and then move to the
state. should be driven high.

o Whenin , a counter should be increased every should get
the bit-value of at the current counter. When you have sent all 8 bits, reset the
counter and go to state.

o In , the output should be driven back to 1 for . After that,
goes high and move back to state.

N.B. You might need different counters for the UART frames and the bit indexes for the data.

Run the simulation script, to check your module implementation.

./run_uart sim.sh

Lab20.md 2024-08-28

Exercise 2. Design the Top module

a. Create the Vivado project

1. Goto and start Vivado

2. Create a new Vivado project, called (RTL Project)

3. In the window, click on and import , ,
and

4. In the window, click on and import

5. In the window, click on and import

6. In the select the from the Boards tab.

7. Click on Finish

b. Design the top module

Open the and implement the following functionalities, following the comments in the
file.

1. Define a new type , which is an array of with an open
range

type t word is array (range<> of (7 downto 0));

2. Define five constants of type . Each element in the array will correspond to an ASClI character
to be transmitted via UART. You can decide which string to print. Here there is an example.

constant BASYS3_STR : t_word(0 to 26) := (X"O0A", --\n

X"0D", --\r
X"42", --B
X"41", --A
X"53", --S
X"59", --Y
X"53", --S
X"33", --3
X"20", --
X"47", --G
X"50", --P
X"49", --I
X"4F", --0
X"2F", --/
X"55", --U
X"41", --A
X"52", --R
X"54", --T
X"20", --
X"44", --D
X"45", --E
X"4D", --M
X"4F", --0

Lab20.md 2024-08-28

KP2A™

X"0A",

KOG

X"0D") ;
Bonus: Instead of creating five constants, you could create a new array type , which is an array of

and create a single constant of type , where each element is a word that you define.
3. Create a new enumerated type for the top FSM, with states and . 4. Instantiate the
module, to debounce the five push buttons. Declare a signal that

must be connected to the module. 5. Instatiate the module, you made in the previous exercise.

Declare the missing signals accordingly. 6. Write the synchronous process, that defines the behaviour of the
state machine.

1. Wheniin state, wait for one the bit in the to go high. Copy
toa signal and move to the state.

2. Whenin the state, check whether the module is busy. If busy, set the UART
low. If not, use a case condition on the signal, to send characters of a word, to the port
of , using the constants you defined before. Do not forget to set the UART < signal high.
Consider also the case when you push more than one button at the same time (). E.g.

case command is

when "00001" =>
uart data <= WORDO (string index);
uart dv <= VUg

when "00010"™ =>

when others => WORDO (string index);

If the "string index’ counter is less than then the length of the word
array, increase it every time the UART “done’ goes high. Otherwise, reset
the counter and set “dv’ low, and go back to the "IDLE" state.

When you are done, run the simulation, clicking on on the left sidebar, to validate your
design.

c. Generate the bitstream

If everything goes well, generate the bitstream and load it to the Basys3 board.

d. Test the design

Open another terminal window on your laptop. Launch a serial terminal on port

using the baudrate you implemented in your design. E.g for

minicom -D /dev/ttyUSB1l -b 9600

Lab20.md 2024-08-28

Try now to push the buttons on the Basys3. If the design is correctly implemented, you should see the words
you defined earlier printed on the screen.

You can close the terminal, typing and

