
Lab20.md 2024-08-28

 /

Lab 20: Design an UART Transmitter

In this lab, we will design a UART Transmitter module, and check the results using the a remote serial console

on our laptop.

The design has the following port Interface

Port Direction Type Width

CLK In std_logic 1

BTN IN std_logic_vector 5

UART_TXD OUT std_logic 1

Depending on which button is pressed, the design will transmit a di�erent string on the UART_TXD. Each

character in the string is represented by an 8-bit word, using the ASCII notation.

Exercise 1. Design a UART Transmitter

The �rst step is to design a UART Transmitter module. Go to ~/labs/lab19/ and open src/UART_TX.vhd

with a text editor.

kate src/UART_TX.vhd &

Lab20.md 2024-08-28

 /

The module should have the following ports and generics

Generic Type Default

BAUDRATE integer 96000

CLKRATE integer 100000000

Port Direction Type Width

CLK In std_logic 1

DATA IN std_logic_vector 8

DV IN std_logic 1

BUSY OUT std_logic 1

TX_OUT OUT std_logic 1

DONE OUT std_logic 1

The BAUDRATE is the number of symbols transferred per seconds.

DATA is the 8-bit word to transmit.

DV is the data valid bit associated to the DATA.

BUSY signals whether the module can accept or not input data.

TX_OUT is the output UART serial line.

DONE tells that the module has �nished transmitting data.

To implement the UART Transmitter, you have to do the following.

Calculate a constant CLKS_PER_BIT, which is equal to the ratio between the system clock and the

baud rate.

Create a FSM with the following states: IDLE, START, SEND_DATA, STOP

When IDLE, the module should send 1 on TX_OUT (Refer to the lesson for the UART protocol).

BUSY and DONE should be 0. If DV = 1, copy the Data in a local signal copy_data and move to

the START state.

When START, TX_OUT should go low for CLKS_PER_BIT, and then move to the SEND_DATA

state. BUSY should be driven high.

When in SEND_DATA, a counter should be increased every CLKS_PER_BIT. TX_OUT should get

the bit-value of local_data at the current counter. When you have sent all 8 bits, reset the

counter and go to STOP state.

In STOP, the TX_OUT output should be driven back to 1 for CLKS_PER_BIT. After that, DONE

goes high and move back to IDLE state.

N.B. You might need di�erent counters for the UART frames and the bit indexes for the data.

Run the simulation script, to check your module implementation.

./run_uart_sim.sh

Lab20.md 2024-08-28

 /

Exercise 2. Design the Top module

a. Create the Vivado project

1. Go to ~/labs/lab20 and start Vivado

2. Create a new Vivado project, called UART (RTL Project)

3. In the Add Sources window, click on Add Files and import src/UART_TX.vhd, src/deb.vhd,

src/multiple_debouncer.vhd and src/top_uart.vhd

4. In the Add Constraints window, click on Add Files and import src/Basys3_Master.xdc

5. In the Add Simulation window, click on Add Files and import sim/tb_top_uart.vhd

6. In the Default Part select the Basys3 from the Boards tab.

7. Click on Finish

b. Design the top module

Open the src/top_uart.vhd and implement the following functionalities, following the comments in the

�le.

1. De�ne a new type t_word, which is an array of std_logic_vector(7 downto 0) with an open

range

type t_word is array (integer range<> of std_logic_vector(7 downto 0));

2. De�ne �ve constants of type t_word. Each element in the array will correspond to an ASCII character

to be transmitted via UART. You can decide which string to print. Here there is an example.

 constant BASYS3_STR : t_word(0 to 26) := (X"0A", --\n

 X"0D", --\r

 X"42", --B

 X"41", --A

 X"53", --S

 X"59", --Y

 X"53", --S

 X"33", --3

 X"20", --

 X"47", --G

 X"50", --P

 X"49", --I

 X"4F", --O

 X"2F", --/

 X"55", --U

 X"41", --A

 X"52", --R

 X"54", --T

 X"20", --

 X"44", --D

 X"45", --E

 X"4D", --M

 X"4F", --O

Lab20.md 2024-08-28

 /

 X"21", --!

 X"0A", --\n

 X"0A", --\n

 X"0D"); --\r

Bonus: Instead of creating �ve constants, you could create a new array type t_words, which is an array of

t_word and create a single constant words of type t_words, where each element is a word that you de�ne.

3. Create a new enumerated type for the top FSM, with states IDLE and SEND_DATA. 4. Instantiate the

mult_debouncer module, to debounce the �ve push buttons. Declare a debounced_btns signal that

must be connected to the module. 5. Instatiate the UART_TX module, you made in the previous exercise.

Declare the missing signals accordingly. 6. Write the synchronous process, that de�nes the behaviour of the

state machine.

1. When in IDLE state, wait for one the bit in the debounced_btns to go high. Copy debounced_btns

to a command signal and move to the SEND_DATA state.

2. When in the SEND_DATA state, check whether the UART_TX module is busy. If busy, set the UART dv

low. If not, use a case condition on the command signal, to send characters of a word, to the data port

of UART_TX, using the constants you de�ned before. Do not forget to set the UART dv signal high.

Consider also the case when you push more than one button at the same time (when others). E.g.

case command is

 when "00001" =>

 uart_data <= WORD0(string_index);

 uart_dv <= '1';

 when "00010" =>

 when others => WORD0(string_index);

If the `string_index` counter is less than then the length of the word

array, increase it every time the UART `done` goes high. Otherwise, reset

the counter and set `dv` low, and go back to the `IDLE` state.

When you are done, run the simulation, clicking on Run Simulation on the left sidebar, to validate your

design.

c. Generate the bitstream

If everything goes well, generate the bitstream and load it to the Basys3 board.

d. Test the design

Open another terminal window on your laptop. Launch a minicom serial terminal on port /dev/ttyUSB1,

using the baudrate you implemented in your design. E.g for baudrate=9600.

minicom -D /dev/ttyUSB1 -b 9600

Lab20.md 2024-08-28

 /

Try now to push the buttons on the Basys3. If the design is correctly implemented, you should see the words

you de�ned earlier printed on the screen.

You can close the terminal, typing CTRL-A and X.

