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Two-Point Functions in QED

- important building blocks in QFT
- simplest correlation functions

- new classes of functions beyond polylogarithms already at two loops
— playground to study perturbative structure of QFT
— interesting from both physical and mathematical view

- today: electron and photon self-energy in QED up to three loops



A Playground for New Mathematical Structures

- electron self energy at 2 loops (first studied by Sabry in 1962):
elliptic integrals, associated to a torus
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A Playground for New Mathematical Structures

- electron self energy at 2 loops (first studied by Sabry in 1962):
elliptic integrals, associated to a torus

%

- photon self energy at 3 loops:
integrals associated to a 2-(complex)-dimensional Calabi-Yau variety (K3)
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- amplitude — reduction to scalar integrals
- integration by parts identities (IBPs)

— reduction to master integrals

— differential equations for master integrals: g—i = A({s;},¢) J

[Gehrmann, Remiddi; arXiv: 9912329]
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- transform J to the canonical basis: i = eAc({s;}) I

[Henn; arXiv: 1304 .1806]
- immediately gives formal solution at order ™ in terms of iterated integrals,

a7 I
dc = Ao jgf b (up to boundary constants)
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Differential Equations and Dispersion Relations

- amplitude — reduction to scalar integrals

- integration by parts identities (IBPs)

— reduction to master integrals

— differential equations for master integrals: g—i = A({s;},e)J
[Gehrmann, Remiddi; arXiv: 9912329] .

- transform 7 to the canonical basis: e =cAc{s;}) Ic

[Henn; arXiv: 1304 .1806]

- immediately gives formal solution at order ™ in terms of iterated integrals,
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Differential Equations and Dispersion Relations

- amplitude — reduction to scalar integrals
- integration by parts identities (IBPs)
— reduction to master integrals
— differential equations for master integrals: g—i = A({s;},e)J
[Gehrmann, Remiddi; arXiv: 9912329] .
- transform 7 to the canonical basis: e =cAc{s;}) Ic
[Henn; arXiv: 1304 .1806]

- iImmediately gives formal solution at order ™ in terms of iterated integrals,

a7 I
dC = Ao jgf b (up to boundary constants)
s

- alternatively, rewrite with dispersion relation: J(s) = 5L S e e 2 Mo))
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The QED Electron and Photon Self-Energy



The QED Self-Energies up to Three Loops

electron self-energy photon self-energy

1 loop | polylogs polylogs

2 loop | polylogs + elliptic integrals | polylogs

3 loop | polylogs + elliptic integrals | polylogs + integrals of K3
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The QED Self-Energies up to Three Loops

electron self-energy photon self-energy
1 loop | polylogs polylogs
2 loop | polylogs + elliptic integrals | polylogs
[3 loop | polylogs + elliptic integrals | polylogs + integrals of K3 ]

- No new geometries here!
- Let's focus on these!

- not computed yet



Electron Self-Energy at 2 Loops - Elliptic Integrals




Electron Self-Energy at 2 Loops - Elliptic Integrals
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Electron Self-Energy at 2 Loops - Elliptic Integrals

Elliptic integral

Elliptic curve root i+1
e > 1
y? = Ry(x) = [ drs
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Electron Self-Energy at 2 Loops - Elliptic Integrals

Elliptic integral

Elliptic curve root i+1
e > 1
y? = Ry(x) = [ drs

root ¢

where Ry(z) = ¢(e — 4)(v5 — 1)2 — 2)((v5 + 1)* — )

- satisfy a 2nd order deq — two independent solutions wg(s), w;(s)



Electron Self-Energy at 2 Loops - Canonical Basis
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Electron Self-Energy at 2 Loops - Canonical Basis

C
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- purely polylogarithmic
- sunrise
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Z:bare = Zbareyp —+ Z:bare,S m,



Electron Self-Energy at 2 Loops — Results

Ebare = z:bareyp —+ Z:bare,S m,
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Photon Self-Energy at 3 Loops
New functions:

two-(real)-dimensional integrals associ-
ated to a two-(complex)-dimensional
Calabi-Yau variety (K3 surface)

Image taken from wikipedia.org

- satisfy a 3rd order deq — Thre€ independent solutions wq(s), wy(s), wy(s)
- special symmetry two



Photon Self-Energy at 3 Loops — Overview and Outlook

- canonical basis (36 masters) v

- use Baikov representation, leading singularities, Feynman parameters,...
- canonical deq is not fully in dlog-form here!

(— backup slides)
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Photon Self-Energy at 3 Loops — Overview and Outlook

- canonical basis (36 masters) v

- use Baikov representation, leading singularities, Feynman parameters,...
- canonical deq is not fully in dlog-form here!

(— backup slides)
- compute boundary constants
- analytic continuation
- compare results with and without dispersive representations

- compute full, renormalized propagator
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- differential equations as state-of-the-art method for precision calculations
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Conclusion

- differential equations as state-of-the-art method for precision calculations

- QED self-energies as a playground to study the mathematical structures in
perturbative QFT

- interesting already at two loops
- even more interesting at three loops (new functions beyond modular forms)

- dispersion relations — alternative analytic representations for iterated
integrals
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Thank you!
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Canonical Basis - Polylogarithmic Case

- crucial to start with ‘'good’ master integrals
- use Baikov representation to find masters ...
- with constant leading singularities
- that are integrals of dlog-forms on the maximal cut

- sometimes similar analysis with Feynman parameters is useful
- 'Building block method’
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Canonical Basis - Polylogarithmic Case

- crucial to start with ‘'good’ master integrals
- use Baikov representation to find masters ...
- with constant leading singularities
- that are integrals of dlog-forms on the maximal cut

- sometimes similar analysis with Feynman parameters is useful
- 'Building block method’
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Canonical Basis - Polylogarithmic Case

- crucial to start with ‘'good’ master integrals
- use Baikov representation to find masters ...
- with constant leading singularities
- that are integrals of dlog-forms on the maximal cut

- sometimes similar analysis with Feynman parameters is useful
- 'Building block method’
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Canonical Basis Beyond Polylogarithms
[ [Gorges et al; arXiv: 2305.14090]

Example: 3-loop banana on the maximal cut

split the fundamental solution matrix
2
Wy % (ﬂ)

W0(5> wi(s) wy(s) 1 wy wy
wo(s) wi(s) wa(s) | =W W, =W - 10 1 o
1 0 0 1

- rotate with W_!
- remove derivatives w((s),w(s)
extra rotations with iterated integrals necessary
[ 20— 8)(u+ 8)%wy (w)? S Gy (u)
Gi(s) = —/du , Gy(s)= [ du
1(8) (u? — 20u + 64)° 2(%) J uv4 —uy16 — uwwg(u)

0
One more of them for the couplings to the banana!
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Dispersion Relations

fe) = 5 [ @ /(z) o [ f(2)

2mi z—2z, 2m
Yz, r

[
B4

\ 20

Figure taken from [Britto et al,; arXiv: 2402 .19415] 13
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Dispersion Relations

)= g [l = o [ae O = o [0

2mi z—2z, 2m 2mi B= %,
Ves I Zg

[
B4

\ 20

Figure taken from [Britto et al,; arXiv: 2402 .19415] 13


2402.19415

The One-Loop Triangle — A Simple Example

Consider

b2
—

q
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<P1
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with internal lines of equal massm =1, p?=p3=0, ¢>=sandd=4—2¢




The One-Loop Triangle — A Simple Example

Consider
b2
»

q
—_
<P1
—_

with internal lines of equal massm =1, p?=p3=0, ¢>=sandd=4—2¢

- define 7(s)= () O~ })T

47 0 0 0
_ € _ sets—2 7 — 7
a - (s—4)s (5174)3 01 J=AJ



The One-Loop Triangle — A Simple Example

-+ canonical basis: 7o(s) = ( () v=svI—s-)- as})T

. 0 0 0
1 1 = =
- Tf =&| V=svas 4—s 0 c=€AcIc

1
V—sV4—s
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The One-Loop Triangle — A Simple Example

- canonical basis: J (s Q v=svi—s-) ¢ }

. 0 0 0
1 1 = =
- Tf =&| V=svas 4—s 0 c=€AcIc
1
0 V—sV4—s 0

- define Tad, = 1 and use regularity conditions — to leading order in e:

&) [ 1
O, 0= &' =—,

@) ) . (1)
I e, (S)_b/ds \/—75/\/4—3/ o

15
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1
0 V—sV4—s 0

- define Tad, = 1 and use regularity conditions — to leading order in e:

&) [ 1
O, 0= &' =—,
@ , o W
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The One-Loop Triangle — A Simple Example

- canonical basis: J (s Q v=svi—s-) ¢ }

. 0 0 0
1 1 = =
- Tf =&| V=svas 4—s 0 c=€AcIc
1
0 V—sV4—s 0

- define Tad, = 1 and use regularity conditions — to leading order in e:

O ) - 0/ ds
T far i O = far- O
= 2%” ‘da Disc({}m(g)) .
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The One-Loop Triangle — A Simple Example

- canonical basis: J (s Q v=svi—s-) ¢ }

. 0 0 0
1 1 = =
- Tf =&| V=svas 4—s 0 c=€AcIc
1
0 V—sV4—s 0

- define Tad, = 1 and use regularity conditions — to leading order in e:

S

) 1
O, 0= &' =—,
@ , o W
>—C(s):/d37\/js/ ﬁ—s/% Fc(a)b/dsﬁ — (s)

- 1 T . (1)
=g [ dos (1 pise (O 0) .
4



Electron Self-Energy at 2 Loops — Results

sgver o (S20V30L () (L= 9) Imo(s)) _ 2% (¥) T(%27)

bare,V 240772(3_1) s \fﬂ_g 2
wg(s) 1 wg(s) 1 wg(s) 1
+I( 2 e @0(8)) N 2 (2, g @o(s)) (B o @0(5))
367252 97252 47252
Jr[(wo(é’)v W,wo(s)) B I(Wo(é’)» ﬁvwo( )) B I<w0<5)7 W?wo( ))
327252 367252 2887252



Electron Self-Energy at 2 Loops — Results

gemoer _ (F20V30L (5) (1= 9)%) Iwo(s)) _ 200 () 1(527)

bare,V. — 24072(s — 1)25s2 V3252
@o(s) 1 @o(s) 1 @o(s) 1
+I( 2, g ®o(9)) N 2 (2, g @o(s)) (B o @0(5))
367252 9252 4252
L (@0(): e @08) I (@o(s): sy o) L (0(): tomgpmr @0 )
327252 367252 2887252

I% D [dsf(s) 4@7(5) = 5= [doDisc (%(0)) fds%




Electron Self-Energy at 2 Loops — Results

I(22, oo 21 (%% e D ®o(9))
- 367252 9252 B 47252
+/(Z<;(~*’): %UHW()(*D /(\Wo(ﬁ'), 50 () W(l('*')) I (w0($), moymna o('*')>

327252 367252 2887252

oo

B 1 / &4(0) oG(o,s) —9G(o,s) + 8G(1,s)

9

c—1

[ B 24+/37s2

<[> > [ dsf(s)—~—(s) = 5 [ doDisc (%@)) [ st

Very compact!



Modular Forms

For the electron self-energy at two loops:

- introduce the modular parameter
@ (8)
@ (8)

- wy(s), wy(s) only defined up to modular transformations

b b b
W a [ @o 7 - at + , a € SL(2,7)
W, c d W ct+d c d

o . b
- s(7) is invariant for “ y eI, (6) CSL(2,Z)
C

T(s) = —  s=s(7)

- a modular form f(r) of weight n for I',;(6) is defined by
1) — 1(E52) = er+ (o), ( b) €I (6)

ct+d c d



Iterated Integrals of Modular Forms

- basis functions for space of modular forms for T'; (6):
fop(T) =wo(s(7))"s(T)P,  0<p<n

- iterated integrals

T

TG >_/df Fran (VI 337)

/d G )

- integration kernels can only have poles at s’ =0, 1, 9,
i.e., the singular points of the geometry!



The 3-Loop Banana as a Symmetric Square

- homogeneous solutions of the 3-loop banana satisfy a 3rd order deq,

3 2
(357 + 2000553 + 1O + e0(6)) t1206) = L(5) 1 a(6) =0

- but they are the different products of just two functions,
wo(s) = wp(s), wi(s) =wi(s), wy(s)=wp(s)m(s)
- these two functions obey a second order differential equation,
d? d
(357 + 015 +0(9)) @04(5) = £5) 0,1 () =0

— L5(s) Is the symmetric square of £,(s)
- Ly(s) is related to the 2-loop sunrise by a change of variables
[Broedel et al,; arXiv: 1907.03787]
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