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Trigger systems for experiments at hadron colliders



Example of the coincidence technique

Measurement of the Rates of Muons from Cosmic Rays

Simple Setup
Absorber between two
scintillation counters to discard
low-energy components from
cosmic rays.

Hits in both scintillators only for
high-energy muons
(Eµ ∼ 300 MeV).

Coincidence Method
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Purpose of the trigger (data acquisition trigger)

Selection of those pp collisions that should be recorded for later data
analysis.
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Operation of the trigger system of the ATLAS

Explanation of the operation of a trigger using the example of the trigger
system of the ATLAS experiment at the HL-LHC.

Two-Level System

Level 1, called L0, for preselection of pp collisions using data from
the calorimeters and the muon spectrometer.
Maximum trigger rate: 1 MHz.
Available time for the trigger decision, known as latency: <10 µs
after a pp collision.
Level 2, called HLT (“high-level trigger”), for final selection of pp
events using data from the entire detector after full event
reconstruction.
Maximum trigger rate: 10 kHz.
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Trigger objects in the first trigger level

Using Calorimeter Data

e/γ: Search for clusters of energy deposits in the electromagnetic
calorimeter that do not extend into the hadronic calorimeter.
⇒ e/γ candidates with η, ϕ, and ET values.

Jets: Search for clusters of energy deposits in cone-shaped regions of
the calorimeters.

p p

.... ...
......

Energieniederschläge

Currently cones with predefined size.
In the future, anti-kT algorithm.

⇒ Jet candidates with η, ϕ, and ET values.

Emiss
T : The vector sum of the transverse energies of the energy

deposits provides a measure of the missing transverse energy.
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Trigger objects in the first trigger level

Using Muon Spectrometer Data ⇒ Muon Candidates

Muon trigger for |η| < 1.05
Trigger Condition: Coincidence of hits in the
4 RPC layers. Estimates of η, ϕ, and pT from
comparing hit positions.

RPC trigger chambers are fast. ⇒ Assignment of a detected muon to
the pp collision in which the muon was produced is possible.

Only moderate spatial resolution in the centimeter range. ⇒
Moderate momentum resolution.

In a second step at L0, the hits in the high-resolution muon drift tube
chambers in the vicinity of the RPC hits are used for improved track
reconstruction.

⇒ Relative pT resolution of ∼ 5% is achievable at L0.

7 7



Electronics used in the trigger

Triggerless readout of the calorimeters and muon chambers: Hit data
is continuously sent from the detectors over gigabit links to the
(remotely located) trigger logic.

Trigger algorithms for the first level are implemented on FPGAs or
FPGAs with embedded microprocessors.

In the HLT, the inner detector data is quickly reconstructed using
specialized pattern recognition chips before the data is processed on a
computer farm with full event reconstruction.

⇒ Complex trigger conditions in the HLT are possible, e.g., the
requirement for the presence of b-quark and τ-jets.
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Physics processes accessible with the trigger

CERN-LHCC-2017-020 ; ATLAS-TDR-029
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Summary of the summer semester material



Electronics for detector read-out: signal types

Analog Signal: Contains information in the continuous variation of
electrical signal properties, such as pulse height, pulse duration, or pulse
shape.

Digital Signal: Information stored in discrete form.

Example. TTL (Transistor-Transistor Logic):
Logical 0: Signal between 0 and 0.8 V.
Logical 1: Signal between 2 V and 5 V.

Advantage of a digital signal: No information loss during small signal
disturbances.
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Characteristic parameters of a signal pulse

Impulshöhe oder Amplitude

Impulsbreite (definiert bei
          halber Signalhöhe)

A

AbfallszeitAnstiegszeit

Impulsboden (auf Englisch: baseline)

U
 o

d
e
r 

I

Anstiegsflanke fallende Flanke
t

Slow Signal: tA ≳100 ns.

Fast Signal: tA ≲1 ns.
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Attenuation and bandwidth
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Signal propagation in a coaxial cable

Equivalent Circuit for a ∆z length of a coaxial cable
∆ U

∆ I

R L

C
1

G

R, L, C, 1
G represent resistance, inductance,

capacitance, and conductance per unit
length.

In an ideal cable, R and G are both zero.

General wave equation for a coaxial cable

∂2U

∂z 2
= LC

∂2U

∂t2
+ (LG + RC )

∂U

∂t
+ RGU .

Ideal cable: R=0, G=0. ∂2U

∂z 2
= LC

∂2U

∂t2

(Wave equation with v = 1√
LC

).
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Processing analog detector signals

Analog signals coming directly from particle detectors are generally
very small.

Example: MDT drift tube with Ar/CO2 (93:7) at 3 bar.
dE
dx = 7.5 keV/cm≈̂7.5/0.03 = 250 electron-ion pairs/cm.
With a gas amplification of 20000, this corresponds to a
total charge of only ∼ 1 pC.

⇒ Protection of the small signals using a Faraday cage.

⇒ Amplification of the signals.

⇒ Routing of the unamplified signals over the shortest possible distances.
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Operational amplifiers

Operational amplifiers (op-amps) are wideband differential amplifiers
with high gain and high input impedance.

Operational amplifiers are available as integrated circuits using bipolar
and field-effect transistors.

Input stage configured as a
differential amplifier, hence two
inputs (+ and -).

Positive and negative supply
voltage required to drive the
inputs and outputs positively and
negatively.

Open-loop gain:

AD :=
dUa

dUD
.
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Characteristics of an operational amplifier

Offset voltage U0 can be
adjusted in most operational
amplifiers.

Linear dependence of Ua on UD

in a small range around U0.

Constant output voltage outside
of this range (amplifier
saturation).
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Principle of negative feedback

Ua = AD(Ue − kUa) ⇔ Ua = AD
1+kAD

Ue ≈
AD→∞

1
kUe .

UP = Ue , UN = kUa , |Ua |<const. Thus,

|UP −UN | = Ua

AD
→

AD→∞
0,

i.e., UP = UN .
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Non-inverting amplifier

Ue = UP = UN =
R1

R1 + RN
Ua

⇔ Ua =

(
1 +

RN

R1

)
Ue .

Positive gain.

Gain value determined entirely by the choice of RN and R1.
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Pulse shaping

Introductory example: Signal pulse of a cylindrical drift tube

Signalverlauf

ohne Impulsformung

t

Signalverlauf nach einem Differenzierglied

Pulse shaping with a differentiator

Preserves the information of the
signal onset time.

Significantly reduces the dead
time of the tube compared to
the case without pulse shaping.
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Low-pass and high-pass Filters

Low-pass High-pass

C
R

U U
e a U

e
U

a
RC

Ua =
1

iωC

R + 1
iωC

Ue

=
1

1 + iωRC
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Ua =
R

R + 1
iωC

Ue

=
1

1 + 1
iωRC

Ue .

ω → 0: Ua → Ue .

ω → ∞: Ua → 0.

ω → 0: Ua → 0.

ω → ∞: Ua → Ue .
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Operational amplifiers as comparators

An operational amplifier saturates when |UP −UN | exceeds a small
threshold.

Comparators are operational amplifiers where this threshold is set very
small.

Ideally:

Ua =

{
Ua,max for U1 > U2,

Ua,min for U1 < U2.

Characteristic Curve:
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Logical basic functions, disjunctive normal form

Two states: logical 0 and logical 1.

Logical basic functions

Conjunction: y = x1 ∧ x2 = x1 · x2 = x1x2.
Disjunction: y = x1 ∨ x2 = x1 + x2.
Negation: y = x̄ .

To create more complex logical functions, one can use the disjunctive
normal form.

n input variables x1, . . . , xn . 1 output variable y.

1. Create a table where the desired output value is listed for all possible
input values. This table is also known as the truth table.

2. Identify all rows in the truth table where y = 1.

3. From each of these rows, form the conjunction of all input variables;
set xk if it is 1, otherwise x̄k .

4. The desired function is obtained by taking the disjunction of all these
product terms.
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Probability distributions

A physical measurement is a random process.

A quantity x , which indicates the outcome of a random process, is
referred to as a random variable or random quantity.

Any function of x is also a random variable.

If the random variable can only take discrete values, there is a
probability associated with the occurrence of each of these values,
which is the probability function.

For random variables with a continuous range of values, the probability
density p(x ) replaces the probability function. Let Ω be a measurable
set of possible values of x with a measure greater than zero. Then,∫

Ω

p(x ) dx

is the probability of observing a value x ∈ Ω.
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Point estimation

Let α be a parameter of a probability distribution. The goal of point
estimation is to find the best estimate (the best measurement in
physicist’s parlance) of α.

x : Random variable representing experimental measurement values.
p(x ;α): Probability density for the measurement of x depending on the

parameter α.

x and α can be multidimensional.

Definition. A point estimator Eα is a function of x used to estimate the
value of the parameter α. Let α̂ denote this estimate, so α̂ = Eα(x ).

Objective is to find a function Eα such that α̂ is as close as possible to the
true value of α.

Since α̂ is a function of random variables, α̂ itself is a random variable.

p(α̂) =

∫
D

Eα(x )p(x ;α) dx ,

where α denotes the true value of the parameter.
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Quality criteria for point estimators

Consistency
n: Number of measurements used for the point estimation.
α̂n : Corresponding estimate.
α0: True value of α.
Eα is called a consistent point estimator if α̂n converges stochastically to
α0. That is, the probability of estimating a value different from α0 tends
to 0 as n → ∞.

Unbiasedness
The bias of an estimator α̂ is defined as

bn(α̂) := E (α̂n − α0) = E (α̂n)− α0.

The point estimator is unbiased if

bn(α̂) = 0, that is, E (α̂n) = α0

for all n.
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Additional quality criteria for point estimators

Efficiency
Let Vmin be the minimum possible variance among all estimators for a
real-valued parameter. The efficiency of a specific point estimator is given
by the ratio Vmin

Var(α̂) , where Var(α̂) is the variance of α̂ for this estimator.

Sufficiency
Any function of data x is called a statistic. A sufficient statistic for α is a
function of the data that contains all the information about α.
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Method of maximum likelihood

p(x ;α): Probability of obtaining measurements x given a parameter α.

Substituting the measured values x into the function p(x ;α) yields a
statistic of x called the likelihood or likelihood function L(x ;α).

The term likelihood is used to indicate its relationship with the
probability density p(x ;α) while emphasizing that L is not a probability
function.

Let f (xk ;α) denote the probability density for the outcome of a single
measurement xk . For n independent measurements x = (x1, . . . , xn), the
likelihood function is

L(x1, . . . , xn ;α) =

n∏
k=1

f (xk ;α).

In the method of maximum likelihood, the estimator for α is chosen to be
the value of α that maximizes L(x ;α).
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Interval estimation

Goal: Determination of an interval that with a specified probability
contains the true value of a parameter.

Limit case of the normal distribution
Let’s assume the variable x ∈ R follows a normal distribution, i.e.,

p(x ) = N (x ;µ, σ) =
1√
2πσ2

e−
1
2

(x−µ)2

σ2 .

If µ and σ are known, then

p(a < x < b) =

b∫
a

N (x ;µ, σ) dx =: β.

If µ is unknown, we can compute p(µ+ c < x < µ+ d):

β =p(µ+ c < x < µ+ d) =

µ+d∫
µ+c

1√
2πσ2

e−
1
2

(x−µ)2

σ2 dx=

d∫
c

1√
2πσ2

e−
1
2

y2

σ2 dy

= p(c − x < −µ < d − x ) = p(x − d < µ < x − c).
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Hypothesis testing

Goal: To determine which hypothesis (regarding a probability distribution)
describes the observed data distributions (data).

Nomenclature: H0: Null hypothesis.
H1: alternative hypothesis.

Simple and composite hypotheses
If hypotheses H0 and H1 are
completely specified without free parameters, they are called simple
hypotheses.
If a hypothesis contains at least one free parameter, it is referred to
as a composite hypothesis.

Procedure
For hypothesis testing, one must choose W such that

p(data ∈ W | H0) = α

with a small chosen α, and simultaneously

p(data ∈ D\W | H1) = β

with β as small as possible.
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Topology of a pp collision event

p p

Geladene und neutrale

Teilchen, die in der Kollision
erzeugt wurden

Particles producible in a collision in the final state

Leptons

Neutrinos: stable, weakly charged. ⇒ No interaction leading to a
measurable electrical signal in the detector components.
Electrons: stable, electrically charged. ⇒ Electrical signals in the
detector components.
Muons: unstable, but due to being ultra-relativistic in the laboratory
frame, they are long-lived and do not decay within the detector;
electrically charged. ⇒ Electrical signals in the detector components.
τ-Leptons: unstable. ⇒ Detectable only through their decay
products.
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Topology of a pp collision event

Other particles producible in a collision in the final state

Hadrons

Initially, quarks and gluons are produced in the elementary collision.
Due to confinement, these are not directly observable; instead, jets
of hadrons arising from quarks and gluons are observed.
Special role of two quarks:
b-quarks form long-lived b-hadrons, enabling the identification of
b-quark jets.
t-quarks are so short-lived that they cannot form hadrons. They are
detectable via their decay t → Wb.

Photons
Photons are stable. Although electrically neutral, they can produce
electromagnetic showers in matter, which can be detected in the
detector.
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Thank you very much for your interest and
participation in the lecture!

Best of luck with your master’s thesis!


