
Lab06.md 2024-08-27

Lab 6: Combinatorial Logic - Design a Ripple Carry Adder

In this lab, we will design a simple 4-bit Full Adder block, purely combinatorial, using the ripple Carry adder (RCA) scheme.

A block diagram of the design is shown below.

The design

Port	Direction	Width	Туре
ENABLE	IN	1	std_logic
C0	IN	1	std_logic
А	IN	4	std_logic_vector
В	IN	4	std_logic_vector
S	OUT	4	std_logic_vector
C4	OUT	1	std_logic

A testbench is provided to check the outputs and prints a summary message at the end.

The functionality of the block can be summarised as,

S = A + B

Exercise

1. Hierarchical Design

Lab06.md 2024-08-27

Implement the 4-bit RCA in file \sim /labs/lab06/src/rca.vhd, instantiating the fulladder block that you designed in Lab 5. A symlink to fulladder.vhd is also available in \sim /labs/lab06/src/.

N.B. You can access the individual bits of a std logic vector using round parenthesis

```
A(4); -- Get bit 4 of signal A

A(3 downto 1) -- Returns a std_logic vector of size 3, taking the bits (3)

(2)(1) of signal A
```

2. Run the simulation and investigate the design

Run the simulation using the run_sim.sh script. Once you pass the simulation, run the script in GUI mode and investigate the hierarchical design.

```
./run_sim -g
```

3. Enabling/Disabling

Enhance the design to add an enable signal which zeros the S output when is set to 1, and calculates the sum when set to 0.

4. Increase the width

Increase the length of the adder to 8 bits.