
INTRODUCTION TO FPGA PROGRAMMING

LESSON 09: FINITE STATE MACHINES

Dr. Davide Cieri1

1Max-Planck-Institut für Physik, Munich

September 2024

1 / 16

FINITE STATE MACHINES
• A Finite State Machine (FSM) is a computational model used to design sequential logic

circuits.
• Consists of a finite number of states, transitions between those states, and actions.
• Moore FSM: Outputs depend only on the state

• Mealy FSM: Outputs depend on state and inputs

2 / 16

STATES, TRANSITIONS AND ACTIONS

• State: describe the status of the system.
• Transition: The action of moving from one state to the other.
• Action: The event triggering a transition

– The same action can have different effect depending on the current state
3 / 16

MOORE VS MEALY
Moore

• Advantages:
– Simpler circuit, Faster Clock Frequency
– No combinational input to output
– Can have output encoded FSM states

• Disadvantages:
– Slower to react to input changes

Mealy

• Advantages:
– Faster to react to inputs

• Disadvantages:
– Combinational inputs to Outputs
– More complex circuit (slower clock)

4 / 16

DEFINE FSM STATES IN VHDL
• States can me encoded as constants or enumerated types

• Enumerated types are more intuitive

• Constant allows you to access each state vector bits

• States and types must be defined in the declarative part of your architecture (before
begin)

−− C o n s t a n t S t a t e s
c o n s t a n t RED : s t d _ l o g i c _ v e c t o r (1 downto 0) : = " 00 " ;
c o n s t a n t AMBER : s t d _ l o g i c _ v e c t o r (1 downto 0) : = " 01 " ;
c o n s t a n t GREEN : s t d _ l o g i c _ v e c t o r (1 downto 0) : = " 10 " ;
s i g n a l s t a t e : s t d _ l o g i c _ v e c t o r (1 downto 0) ;
−− Enumerated t y p e
t y p e f s m _ s t a t e i s (RED , AMBER , GREEN) ;
s i g n a l s t a t e : f s m _ s t a t e : = RED ;

5 / 16

STATE ENCODING IMPLEMENTATION
• When using enumerated type, the synthesis tool will encode the states into binary vectors
• Three main possibilities:

– Binary Encoding (default): States are encoded in the minimum number of bits needed to
represent all states

– One-hot Encoding: Each state is represented by one bit and the FSM is encoded so only one bit
set at any time.

– Gray code Encoding: The states are encoded in such a way that any state transition only has
one bit change at a time.

• You can force Vivado using one of three encoding using the attribute fsm_encoding (link
to documentation)

a t t r i b u t e fsm_encoding : s t r i n g ;
a t t r i b u t e fsm_encoding o f s t a t e : s i g n a l i s " one_hot " ;

6 / 16

https://docs.amd.com/r/en-US/ug901-vivado-synthesis/FSM_ENCODING
https://docs.amd.com/r/en-US/ug901-vivado-synthesis/FSM_ENCODING

BINARY ENCODING

• States are assigned binary values.

• Number of bits required: log2(Number of states).
• Advantages: Minimal bit width, efficient use of state register.

• Disadvantages: Complex state transition logic, higher risk of glitches.

Example:
• For 4 states: S0 = "00", S1 = "01", S2 = "10", S3 = "11".

7 / 16

ONE-HOT ENCODING

• Each state is represented by a single bit set to ’1’, all others are ’0’.

• Number of bits required = Number of states.

• Advantages: Simple state transition logic, faster operation.

• Disadvantages: Higher resource usage, less efficient for many states.

Example:
• For 4 states: S0 = "0001", S1 = "0010", S2 = "0100", S3 = "1000".

8 / 16

GRAY ENCODING

• Adjacent states differ by only one bit.

• Number of bits required: log2(Number of states).
• Advantages: Minimizes switching noise, ideal for asynchronous systems.

• Disadvantages: More complex to implement, less common.

Example:
• For 4 states: S0 = "00", S1 = "01", S2 = "11", S3 = "10".

9 / 16

IMPLEMENTING FSM IN VHDLS

Single-Process Implementation

• Structure: Combines all logic (state
transitions, output, sequential) in one
process block.

• Advantages:
– Simpler design with fewer processes.
– Easier to manage for small FSMs.

• Disadvantages:
– Difficult to debug due to mixed logic.
– Lower readability for complex FSMs.

Multiple-Process Implementation

• Structure: Separates FSM into distinct
processes:

– State Register Process (sequential)
– Next State Logic Process (combinational)
– Output Logic Process (optional)

• Advantages:
– Higher clarity and modularity.
– Easier to debug and modify.

• Disadvantages:
– More verbose code.
– Requires careful synchronization.

10 / 16

SINGLE SEQUENTIAL PROCESS EXAMPLE
i f r i s i n g _ e d g e (c l k) then

i f r e s e t = ’ 1 ’ then
s t a t e <= S0 ;

e l s e
c a s e s t a t e i s

when S0 = >
i f i n p u t = ’ 1 ’ then

s t a t e <= S1 ;
end i f ;
o u t p u t <= ’ 0 ’ ;

when S1 = >
s t a t e <= S0 ;
o u t p u t <= ’ 1 ’ ;

when o t h e r s = >
s t a t e <= S0 ;

end c a s e ;
end i f ;

end i f ; 11 / 16

MULTIPLE-PROCESS FSM EXAMPLE

−− S t a t e r e g i s t e r p r o c e s s
p r o c e s s (c l k)
b e g i n

i f r i s i n g _ e d g e (c l k) then
i f r e s e t = ’ 1 ’ then

s t a t e <= S0 ;
e l s e

s t a t e <= n e x t _ s t a t e ;
end i f ;

end i f ;
end p r o c e s s ;

−− Next s t a t e l o g i c p r o c e s s
p r o c e s s (s t a t e , i n p u t)
b e g i n

c a s e s t a t e i s
when S0 = >

i f i n p u t = ’ 1 ’ then
n e x t _ s t a t e <= S1 ;

e l s e
n e x t _ s t a t e <= S0 ;

end i f ;
when S1 = >

n e x t _ s t a t e <= S0 ;
when o t h e r s = >

n e x t _ s t a t e <= S0 ;
end c a s e ;

end p r o c e s s ;

−− Output l o g i c p r o c e s s
p r o c e s s (s t a t e)
b e g i n

c a s e s t a t e i s
when S0 = >

o u t p u t <= ’ 0 ’ ;
when S1 = >

o u t p u t <= ’ 1 ’ ;
when o t h e r s = >

o u t p u t <= ’ 0 ’ ;
end c a s e ;

end p r o c e s s ;

• N.B. The Output logic can be placed in any of the other two processes, depending if we
want registered or combinatorial outputs.

12 / 16

STATE MACHINE BEST PRACTICES

• One statemachine per file: Improves readability and maintainability.

• Usemore than one process with complex FSMs: At least one clocked for the states, and
one combinational for next state.

• Meaningful state names: Improves code clarity.

• Draw flow diagrams: Visualize FSM before coding.

13 / 16

LAB 14: IMPROVE THE TRAFFIC LIGHT

14 / 16

LAB 15: DESIGN A STOP WATCH

15 / 16

The figures in these slides are taken from:
- Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13- 186389-4.
©2006, Pearson Education, Inc, Upper Saddle River, NJ. All rights reserved
- allaboutfpga.com
- nandland.com
- docs.amd.com
- https://www.symmetryelectronics.com/
- https://www.edn.com/
- Stephen A. Edwards, Columbia University, Fundamentals of Computer Systems, Spring 2012
- https://medium.com/well-red/state-machines-for-everyone-part-1-introduction-b7ac9aaf482e

16 / 16

